Выбрать главу

Когда же мы внутри атома изучаем механическое движение электрона в электростатическом поле, то источником этого поля является единичный положительный заряд протона. Под каким потенциалом находится электрон на первой боровской орбите? Отвечать на такой вопрос надо предельно аккуратно. Физики и химики измерили величину энергии ионизации атома водорода из состояния основной атомной орбиты (при комнатной температуре атома):

При этом над орбитальным электроном была совершена работа А («работа выхода»). Можно считать, что тот потенциал поля, под которым на этой орбите находился электрон, превратился теперь для свободного электрона в почти нулевой потенциал – как в потенциал заряда, очень далеко удалённого (через много-много орбит) от заряда ядра. Но полная энергия электрона (атома) на орбите имела величину:

Кинетическая энергия электрона первой орбиты является базовой величиной и равна «плюс 13,6 эВ». Следовательно, потенциальной энергией электрона на орбите (энергией атома) была следующая:

Энергия ионизации равна работе внешних сил против силы поля ядра (отрицательный заряд не приближается к ядру с помощью «положительной», в таком случае, работы поля ядра, но он удаляется от плюса ядра сторонними силами, совершающими «отрицательную» работу). Поэтому:

эВ.

Ранее мы уже приводили подобную энергетическую диаграмму (рис. 21.4 и 21.7), подтверждающую эти последние цифры.

По определению, разность потенциалов (напряжение) между двумя «точками» поля (ядра) равна отношению работы поля при перемещении положительного заряда из начальной точки в конечную к величине этого заряда:

Но работа А (по определению) равна изменению потенциальной энергии, взятому с обратным знаком:

В результате величина

– отрицательный потенциал.

Действительно, «отрицательная обкладка конденсатора» (орбита) заряжена (электроном на ней) отрицательно. Таким образом, начальным потенциалом (орбита) является величина:

Конечный потенциал

Поэтому первая атомная орбита находится под отрицательным напряжением величиной:

Другая «обкладка» атомного конденсатора (протон) заряжена положительным напряжением по отношению к первой орбите с отрицательным на ней электроном.

Поскольку под зарядом любого конденсатора понимается модуль заряда одной из его обкладок, а мы в атомных переходах оперируем лишь с переходами отрицательного электрона, то всегда будем считать, что наш конденсатор заряжен отрицательным зарядом (электрона) до отрицательного потенциала атомной орбиты.

По мере возбуждения атома, когда электрон будет переходить на всё более высокие (всё более удалённые от протона) орбиты, «атомный конденсатор», хотя и не будет разряжаться (на «верхней» обкладке будет кружить всё тот же электрон), но напряжённость поля между обкладками (а следовательно, на орбите) будет уменьшаться, поскольку будет возрастать ёмкость конденсатора из-за увеличения размеров его «электронной» обкладки:

и тогда напряжённость

Вычислим теперь величину напряжённости того поля (протона), которая действует на электрон на уровне его первой орбиты:

Сейчас мы слегка отвлечёмся от темы в сторону электротехники. Обратим внимание школьника на то, что величина такой напряжённости – абсолютно гигантская для нашего макро-мира привычных нам предметов:

То есть эта напряжённость поля в миллион раз больше, чем та напряжённость, которая наблюдается между проводами и землёй в знаменитых высоковольтных линиях передач, протянувшихся через всю нашу страну под названием ЛЭП-500. В этих линиях провода находятся под напряжением 500 кВ (пятьсот киловольт или пятьсот тысяч вольт). Такую линию, содержащую 3 мощных провода (трёх-фазное напряжение), держат металлические опоры высотой 30 метров. Сечение каждого провода – 400 (2х2 см). По каждому проводу протекает ток порядка 600 А (1,5 А на каждый 1 ). Провода изолируют от металлических опор стеклянными гирляндами длиной до 5-ти метров – каждая. Расстояния между каждым из 3-х проводов – более метра. Но и при таком расстоянии слышен характерный «треск», особенно усиливающийся во влажную погоду. Это «трещат» микро-воздушные разряды тока между проводами и влажным воздухом. Если бы расстояния между проводами были единицами сантиметров, то разряды были бы постоянными и высоко токовыми. То есть воздух уже не выдерживал бы напряжения между проводами порядка 500 киловольт.