Выбрать главу

Практически — потому что эти ограничения не определяют массы фундаментальных частиц, а также общее количество кварков и лептонов. Обычная материя состоит всего из четырёх частиц: верхнего кварка, нижнего кварка, электрона и электронного нейтрино. Например, протон в ядре атома формируется из двух верхних и одного нижнего кварка, а нейтрон — из двух нижних и одного верхнего. Но на этом природа не остановилась. Она создала более тяжёлые версии четырёх базовых частиц: странный кварк, очарованный кварк, мюон и мюонное нейтрино. Затем последовали и их утяжелённые версии: прелестный кварк, истинный кварк, тау и тау-нейтрино. Эти частицы не играют практически никакой роли в современной Вселенной, так как энергия, необходимая для их формирования, существовала лишь в первые доли секунды после Большого взрыва. Как шутил американский физик И. А. Раби, непонятно, кто их заказывал.[256]

Стандартная модель не объясняет, зачем природа наделила каждый свой строительный блок двумя партнёрами, а также почему распределила между ними массу таким образом, как мы это наблюдаем. Можно предположить, что это не последнее слово природы, а лишь приблизительное видение более глубоких процессов, которые нам ещё предстоит открыть. Но эти отклонения не должны отвлекать нас от важного факта: принципы специальной теории относительности и квантовой теории налагают на вероятности такие строгие ограничения, что в результате определяют почти всё в физическом мире. «Интересно, был ли у Бога хоть какой-то выбор при создании мира?» — писал Эйнштейн. Квантовая теория и специальная теория относительности подсказывают нам, что ответ на этот вопрос отрицательный.

Как уже упоминалось в начале этой главы, некоторые люди считают физиков-теоретиков фантазёрами, которые заняты лишь тем, что воображают удивительные и странные вещи. Проверить их правоту экспериментальным путём невозможно, а значит, нельзя и доказать, что они врут. Но тот факт, что специальная теория относительности и квантовая теория почти полностью описывают процессы в окружающей нас Вселенной, может означать лишь одно: в целом они верны. Это, в свою очередь, делает их тугой смирительной рубашкой, сковывающей действия физиков, которые пытаются докопаться до более глубокой теории. Квантовая теория и специальная теория относительности оставляют так мало места для манёвра, что двигаться в нём почти невозможно. «Почти все твои попытки обречены на провал. Большинство теорий, рождаемых физиками, умирает во младенчестве», — говорит Аркани-Хамед.

В 2017 году существовал лишь один кандидат на звание более глубокой теории, соответствующей всем ограничениям, — теория струн.[257]

Струны в космосе

Теория струн, также известная как теория суперструн, возникла в результате попытки понять, что собой представляет сильное ядерное взаимодействие. Сильным его называют не просто так. Для того чтобы оторвать два кварка друг от друга, требуется столько энергии, что в пространстве между ними при этом спонтанно возникает пара «кварк–антикварк». Представьте себе, что вы пытаетесь подойти к другу в толпе, но между вами постоянно втискиваются другие люди. Вот так чувствуют себя кварки. Сильное ядерное взаимодействие удерживает их в границах протонов и нейтронов в атомных ядрах и делает выделение единичного кварка невозможным.[258]

Что странно в сильном ядерном взаимодействии, так это то, что оно растёт по мере увеличения расстояния между кварками. Сравните его с силой притяжения (чем дальше два массивных тела друг от друга, тем гравитация слабее) или магнетизмом (если увеличить расстояние между магнитами, он тоже ослабнет). Причина размывания этих сил в том, что они распространяются во всех направлениях.[259] Но в том случае, если сила ограничена узким каналом между двумя телами, она действительно может расти по мере их расхождения, как при растяжении пружины или резиновой ленты.[260] Точно так же это работает и в случае сильного ядерного взаимодействия между кварками. И это их поведение стало первым признаком того, что фундаментальные строительные блоки Вселенной могут быть похожи не на крошечные точки, а на одномерные энергетические струны.

В данной теории, пионером которой в 1968 году стал итальянский физик Габриэле Венециано, эти струны вибрируют, как на музыкальном инструменте, и каждая вибрация соответствует определённой фундаментальной частице.[261] «По сути, теория струн описывает пространство и время, массу и энергию, гравитацию и свет, всё Божье творение как музыку», — говорит писатель Рой Х. Уильямс.[262]

вернуться

256

На самом деле этот лауреат Нобелевской премии польского происхождения спросил: «Кто это заказывал?» — в 1936 году, когда открыл мюон — более тяжёлую версию электрона.

вернуться

257

Альтернативный и более консервативный подход к поиску более глубокой теории гравитации называется теорией петлевой квантовой гравитации (см. Smolin L. Three Roads to Quantum Gravity. — London: Basic Books, 2002). Эта теория описывает гравитацию на квантовом уровне, но не пытается объединить её с другими видами взаимодействия. Кроме того, ещё не было доказано, что в макромасштабе она ведёт к общей теории относительности.

вернуться

258

Кварки могут иметь одну из двух строго определённых конфигураций. Три кварка составляют барион (ими являются, например, протоны и нейтроны), а пара «кварк–антикварк» называется мезоном. Кварки удерживаются в границах барионов и мезонов только при низком уровне энергии. Если уровень энергии высок, как, например, был при Большом взрыве, они разрываются и формируется аморфная кварк-глюонная плазма.

вернуться

259

Поскольку гравитация действует во всех направлениях, на расстоянии r от массивного тела она распространяется по площади сферы 4πr2 и, соответственно, уменьшается на 1/4πr2. На этом основании действует закон обратных квадратов.

вернуться

260

Именно это и происходит с магнитным полем внутри суперпроводника — материала, охлаждённого до такой температуры, при которой исчезает его естественное электрическое сопротивление. Внутри материала магнитное поле заключено в узкие каналы, называемые силовыми трубками.

вернуться

261

Veneziano G. Construction of a crossing-symmetric, Regge behaved amplitude for linearly rising trajectories // Nuovo Cimento A. — 1968. — Vol. 57. — P. 190. Теория Венециано, называющаяся дуально-резонансной моделью, позднее превратилась в теорию струн.

вернуться

262

Williams R. H. String Theology. — 31 July 2006 (http://www.mondaymorningmemo.com/newsletters/string-theology/).