Зачем применять рекурсию, если задача легко решается с циклом? Вполне резонный вопрос. Что ж, пора познакомиться с функциональным программированием!
В языках функционального программирования, таких как Haskell, циклов нет, поэтому для написания подобных функций приходится применять рекурсию. Если вы хорошо понимаете рекурсию, вам будет проще изучать функциональные языки. Например, вот как выглядит функция sum на языке Haskelclass="underline"
sum [] = 0 Базовый случай
sum (x:xs) = x + (sum xs) Рекурсивный случай
На первый взгляд кажется, что одна функция имеет два определения. Первое определение выполняется для базового случая, а второе — для рекурсивного случая. Функцию также можно записать на Haskell с использованием команды if:
sum arr = if arr == []
then 0
else (head arr) + (sum (tail arr))
Но первое определение проще читается. Так как рекурсия широко применяется в языке Haskell, в него включены всевозможные удобства для ее использования. Если вам нравится рекурсия или вы хотите изучить новый язык — присмотритесь к Haskell.
Упражнения
4.1 Напишите код для функции sum (см. выше).
4.2 Напишите рекурсивную функцию для подсчета элементов в списке.
4.3 Найдите наибольшее число в списке.
4.4 Помните бинарный поиск из главы 1? Он тоже относится к классу алгоритмов «разделяй и властвуй». Сможете ли вы определить базовый и рекурсивный случай для бинарного поиска?
Быстрая сортировка
Быстрая сортировка относится к алгоритмам сортировки. Она работает намного быстрее сортировки выбором и часто применяется в реальных программах. Например, в стандартную библиотеку C входит функция с именем qsort, реализующая быструю сортировку. Быстрая сортировка также основана на стратегии «разделяй и властвуй».
Воспользуемся быстрой сортировкой для упорядочения массива. Как выглядит самый простой массив, с которым может справиться алгоритм сортировки (помните подсказку из предыдущего раздела)? Некоторые массивы вообще не нуждаются в сортировке.
Пустые массивы и массивы, содержащие всего один элемент, станут базовым случаем. Такие массивы можно просто возвращать в исходном виде — сортировать ничего не нужно:
def quick sor t(array):
if len(array) < 2:
return array
Теперь перейдем к массивам большего размера. Массив из двух элементов тоже сортируется без особых проблем.
А как насчет массива из трех элементов?
Помните: мы используем стратегию «разделяй и властвуй». Следовательно, массив должен разделяться до тех пор, пока мы не придем к базовому случаю. Алгоритм быстрой сортировки работает так: сначала в массиве выбирается элемент, который называется опорным.
О том, как выбрать хороший опорный элемент, будет рассказано далее. А пока предположим, что опорным становится первый элемент массива.
Теперь мы находим элементы, меньшие опорного, и элементы, большие опорного.
Этот процесс называется разделением. Теперь у вас имеются:
• подмассив всех элементов, меньших опорного;
• опорный элемент;
• подмассив всех элементов, больших опорного.
Два подмассива не отсортированы — они просто выделены из исходного массива. Но если бы они были отсортированы, то провести сортировку всего массива было бы несложно.
Если бы подмассивы были отсортированы, то их можно было бы объединить в порядке «левый подмассив — опорный элемент — правый подмассив» и получить отсортированный массив. В нашем примере получается [10, 15] + [33] + [] = [10, 15, 33], то есть отсортированный массив.
Как отсортировать подмассивы? Базовый случай быстрой сортировки уже знает, как сортировать массивы из двух элементов (левый подмассив) и пустые массивы (правый подмассив). Следовательно, если применить алгоритм быстрой сортировки к двум подмассивам, а затем объединить результаты, получится отсортированный массив!
quicksort([15, 10]) + [33] + quicksort([])
> [10, 15, 33] Отсортированный массив
Этот метод работает при любом опорном элементе. Допустим, вместо 33 в качестве опорного был выбран элемент 15.
Оба подмассива состоят из одного элемента, а вы уже умеете сортировать такие подмассивы. Получается, что вы умеете сортировать массивы из трех элементов. Это делается так: