Вот как должна выглядеть эта таблица:
Вы изобразили ее правильно? Теперь заполните. Какие достопримечательности вы выберете? Ответ:
Взаимозависимые элементы
Предположим, вы хотите посетить Париж и добавили в свой список пару элементов.
На их посещение потребуется много времени, потому что сначала придется приехать из Лондона в Париж. Переезд отнимает полдня. Если вы захотите посмотреть все 3 достопримечательности, осмотр займет 4,5 дня.
Стоп, небольшая поправка. Вам не обязательно приезжать в Париж ради каждой достопримечательности. После того как вы там окажетесь, каждый последующий элемент займет всего один день. Следовательно, потребуется 1 день на каждую достопримечательность + 1 день на переезды = 3,5 дня, а не 4,5.
Если вы положите Эйфелеву башню в свой «рюкзак», то Лувр станет «дешевле» — он займет всего 1 день вместо 1,5 дня. Как смоделировать это обстоятельство в динамическом программировании?
Никак. Динамическое программирование — мощный метод, способный решать подзадачи и использовать полученные ответы для решения большой задачи. Динамическое программирование работает только в том случае, если каждая подзадача автономна, то есть не зависит от других подзадач. Из этого следует, что учесть поездки в Париж в алгоритме динамического программирования не удастся.
Может ли оказаться, что решение требует более двух «подрюкзаков»?
Может оказаться, что в лучшем решении должны отбираться больше двух элементов. В текущем варианте алгоритма объединяются не более двух «подрюкзаков» — больше двух их не бывает. Однако вполне возможно, что у этих «подрюкзаков» будут собственные «подрюкзаки».
Возможно ли, что при лучшем решении в рюкзаке остается пустое место?
Да. Представьте, что вы можете также положить в рюкзак бриллиант.
Бриллиант очень крупный: он весит 3,5 фунта и стоит 1 миллион долларов — намного больше, чем любые другие предметы. Безусловно, нужно брать именно его! Но в рюкзаке остается еще пустое место на 0,5 фунта, и в нем ничего не поместится.
Упражнения
9.2 Предположим, что вы собираетесь в турпоход. Емкость вашего рюкзака составляет 6 фунтов, и вы можете взять предметы из следующего списка. У каждого предмета имеется стоимость; чем она выше, тем важнее предмет:
• вода, 3 фунта, 10;
• книга, 1 фунт, 3;
• еда, 2 фунта, 9;
• куртка, 2 фунта, 5;
• камера, 1 фунт, 6
Как выглядит оптимальный набор предметов для похода?
Самая длинная общая подстрока
Мы рассмотрели одну задачу динамического программирования. Какие выводы из нее можно сделать?
• Динамическое программирование применяется для оптимизации какой-либо характеристики при заданных ограничениях. В задаче о рюкзаке требуется максимизировать стоимость отобранных предметов с ограничениями по емкости рюкзака.
• Динамическое программирование работает только в ситуациях, в которых задача может быть разбита на автономные подзадачи, не зависящие друг от друга.
Построить решение на базе динамического программирования бывает непросто. В этом разделе мы сосредоточимся на этой теме. Несколько общих рекомендаций:
• в каждом решении из области динамического программирования строится таблица;
• значения ячеек таблицы обычно соответствуют оптимизируемой характеристике. Для задачи о рюкзаке значения представляли общую стоимость товаров;
• каждая ячейка представляет подзадачу, поэтому вы должны подумать о том, как разбить задачу на подзадачи. Это поможет вам определиться с осями.
Рассмотрим еще один пример. Допустим, вы открыли сайт dictionary.com. Пользователь вводит слово, а сайт возвращает определение. Но если пользователь ввел несуществующее слово, нужно предположить, какое слово имелось в виду. Алекс ищет определение «fish», но он случайно ввел «hish». Такого слова в словаре нет, но зато у вас есть список похожих слов.
(Это несерьезный пример, поэтому список ограничен всего двумя словами. Вероятно, на практике такой список будет состоять из тысяч слов.)
Итак, Алекс ввел строку hish. Какое слово он хотел ввести на самом деле: fish или vista?