Выбрать главу

Алгоритм k ближайших соседей прост, но полезен! Если вы пытаетесь выполнить классификацию чего-либо, сначала попробуйте применить алгоритм k ближайших соседей. Рассмотрим более реалистичный пример.

Построение рекомендательной системы

Представьте, что вы работаете на сайте Netflix и хотите построить систему, которая будет рекомендовать фильмы для ваших пользователей. На высоком уровне эта задача похожа на задачу с грейпфрутами!

Информация о каждом пользователе наносится на график.

Положение пользователя определяется его вкусами, поэтому пользователи с похожими вкусами располагаются недалеко друг от друга. Предположим, вы хотите порекомендовать фильмы Приянке. Найдите пять пользователей, ближайших к ней.

У Джастина, Джей-Си, Джозефа, Ланса и Криса похожие вкусы. Значит, те фильмы, которые нравятся им, с большой вероятностью понравятся и Приянке!

После того как у вас появится такая диаграмма, построить рекомендательную систему будет несложно. Если Джастину нравится какой-нибудь фильм, порекомендуйте этот фильм Приянке.

Однако в картине не хватает одного важного фрагмента. Вы оценивали, насколько близки вкусы двух пользователей на графике. Но как определить, насколько они близки?

Извлечение признаков

В примере с грейпфрутами мы сравнивали фрукты на основании их размера и цвета кожуры. Размер и цвет — признаки, по которым ведется сравнение. Теперь предположим, что у вас есть три фрукта. Вы можете извлечь из них информацию, то есть провести извлечение признаков.

Данные трех фруктов наносятся на график.

Из диаграммы хорошо видно, что фрукты A и B похожи. Давайте измерим степень их сходства. Для вычисления расстояния между двумя точками применяется формула Пифагора.

Например, расстояние между A и B вычисляется так:

Расстояние между A и B равно 1. Другие расстояния вычисляются аналогично.

Формула расстояния подтверждает то, что мы видим: между фруктами A и B есть сходство.

Допустим, вместо фруктов вы сравниваете пользователей Netflix. Пользователей нужно будет как-то нанести на график. Следовательно, каждого пользователя нужно будет преобразовать в координаты — так же, как это было сделано для фруктов.

Когда вы сможете нанести пользователей на график, вы также сможете измерить расстояние между ними.

Начнем с преобразования пользователей в набор чисел. Когда пользователь регистрируется на Netflix, предложите ему оценить несколько категорий фильмов: нравятся они лично ему или нет. Таким образом у вас появляется набор оценок для каждого пользователя!

Приянка и Джастин обожают мелодрамы и терпеть не могут ужасы. Морфеусу нравятся боевики, но он не любит мелодрамы (хороший боевик не должен прерываться слащавой романтической сценой). Помните, как в задаче об апельсинах и грейпфрутах каждый фрукт представлялся двумя числами? Здесь каждый пользователь представляется набором из пяти чисел.

Математик скажет, что вместо вычисления расстояния в двух измерениях вы теперь вычисляете расстояние в пяти измерениях. Тем не менее формула расстояния остается неизменной.

Просто на этот раз используется набор из пяти чисел вместо двух.

Формула расстояния универсальна: даже если вы используете набор из миллиона чисел, расстояние вычисляется по той же формуле. Естественно спросить: какой смысл передает метрика расстояния с пятью числами? Она сообщает, насколько близки между собой эти наборы из пяти чисел.

Это расстояние между Приянкой и Джастином.

Вкусы Приянки и Джастина похожи. А насколько различаются вкусы Приянки и Морфеуса? Вычислите расстояние между ними, прежде чем продолжить чтение.

Сколько у вас получилось? Приянка и Морфеус находятся на расстоянии 24. По этому расстоянию можно понять, что у Приянки больше общего с Джастином, чем с Морфеусом.

Прекрасно! Теперь порекомендовать фильм Приянке будет несложно: если Джастину понравился какой-то фильм, мы рекомендуем его Приянке, и наоборот. Вы только что построили систему, рекомендующую фильмы.

Если вы являетесь пользователем Netflix, то Netflix постоянно напоминает вам: «Пожалуйста, оценивайте больше фильмов. Чем больше фильмов вы оцените, тем точнее будут наши рекомендации». Теперь вы знаете почему: чем больше фильмов вы оцениваете, тем точнее Netflix определяет, с какими пользователями у вас общие вкусы.