Выбрать главу

Сложным оказалось и крепление элементов силовой установки к корпусу, выполненному из тонколистового металла. Наиболее подходящим местом для этого были торсионные балки, но, передавая нагрузки от торсиона на нежесткий корпус, они могли существенно деформироваться, что привело бы к разрушению двигателя. Для компенсации деформаций во всех точках крепления установили мощные резиновые амортизаторы. Поставив карданные валы со шлицевыми соединениями, решили вопрос с взаимной центровкой агрегатов силовой передачи.

Распределительная коробка:

1—картер; 2—фланец кардана вала привода лебедки; 3—поводковый валик привода лебедки; 4—кожух; 5—насос водооткачивающей системы; 6—сапун; 7—рым; 8—левая опора; 9—поводковый валик левого гребного винта; 10—поводковый валик включения винтов и гусениц; 11 — пробка сливного отверстия; 12—фланец кардана ведомого вала; 13—поводковый валик правого гребного винта

Выходя из воды на сушу, транспортер должен был преодолевать крутизну до 40°. Ярославские моторостроители не гарантировали нормальной работы двигателя в таких условиях. В ОКБ исследовали условия забора масла из картера при максимальных углах подъема и доработали систему смазки двигателя, добившись устойчивой его работы на подъемах до 42°. По этому показателю, например, плавающий транспортер превосходил лучшие в то время танки.

Силовой агрегат артиллерийского тягача представлял собой моноблок, объединяющий двигатель и коробку передач. Следовательно, отбор мощности требовалось производить уже с выходного вала коробки передач. Поэтому был разработан новый агрегат — распределительная коробка, с которой мощность передавалась карданными валами на гусеницы при движении машины по суше, на гребные винты, приводы насосов откачивающей системы и на привод встроенной лебедки. Задний ход обеспечивался переключением шестерен коробки передач.

Казалось бы, использование уже хорошо зарекомендовавших себя узлов мытищинского арттягача в ходовой части плавающего транспортера не должно было создавать никаких проблем. Но они появились, как только конструкторы приступили к детальной проработке гусеничного движителя. Так, общая масса тягача с нагрузкой не превышала 8,5 т, у транспортера достигала 12,5 — 14,5 т. Для получения одинаковой нагрузки на торсионы и опорные катки требовалось увеличить их число с 10 до 14. Это, в свою очередь, позволило довести длину опорной поверхности гусениц до 4,6 м — максимального значения при ширине колеи 2,3 м, когда обеспечивается удовлетворительная поворотливость гусеничной машины на мягких грунтах. Удельное давление на грунт транспортера с трехтонной нагрузкой должно было превысить 0,45 кгс/см2 (у танка Т-34 — 0,72 кгс/см2). В то же время, удлинение гусеничной цепи увеличивало нагрузки на ведущую звездочку и ленивец и приводило к провисанию гусеницы между опорными катками. Введение даже третьего поддерживающего катка для верхней ветви не спасало от спадания гусеницы при поворотах на мягких грунтах. Чтобы этого не происходило, требовалось увеличить динамический ход опорного катка в два раза — с 70 мм у тягача до 150 — 170 мм у транспортера. Разработчики тягача считали технически невозможным без увеличения динамического хода создать 14-катковую ходовую часть, устойчивую к спаданию гусеницы, ссылаясь при этом на экспериментальные данные, полученные танкистами на полигонах. Проблему удалось решить по завершении заводских ходовых испытаний первого опытного образца транспортера, после тщательного всестороннего изучения сопутствующих явлений.

К-61 морской пехоты Индонезии доставил гуманитарную помощь населению, пострадавшему во время стихийного бедствия. 2005 г.

Балка настила:

1—упор: 2—настил; 3—серьга для крепления грузов; 4—ребра жесткости; 5—скосы

Что касается водоходного движителя, единого мнения на этот счет не существовало. Тогда-то А. Кравцеву и пригодился богатый дальневосточный опыт создания переправочных средств и движителей к ним. Например, гребной винт имел ряд преимуществ в обеспечении высокой скорости движения на воде и был сравнительно простым и легким. Однако для его эффективной работы подводной части машины следовало придать форму, обеспечивающую хороший подход воды к нему, и одновременно требовалось защитить винт от повреждений при движении по суше, а также при входе и выходе из воды. Затем необходимо было определить размеры, шаг винтов, их количество, чтобы не только полностью использовать мощность дизеля, но и обеспечить маневрирование транспортера на малой скорости, когда водяные рули теряют свою эффективность.