Выбрать главу

3. Но поразительнее всего то, что закон тяготения прост. Его легко сформулировать так, чтобы не оставалось никаких лазеек для двусмысленности и для иного толкования. Он прост и поэтому прекрасен. Он прост по форме. Я не говорю, что он действует просто - движение разных планет, их взаимное влияние могут быть очень запутанными, и определить, как движется каждая звезда в шаровом скоплении, не в наших силах. Закон действует сложно, но его коренная идея проста. Это и роднит все наши законы. Сами по себе они всегда оказываются простыми, хотя в природе действуют сложным образом.

4. И, наконец, закон тяготения универсален. Он простирается на огромные расстояния, и Ньютон, которого интересовала Солнечная система, вполне мог бы предсказать, что получится из опыта Кавендиша, ибо весы Кавендиша, два притягивающихся шара, это маленькая модель Солнечной системы. Если увеличить ее в десять миллионов миллионов раз, то мы получим Солнечную систему. Увеличим еще в десять миллионов миллионов раз - и вот вам галактики, которые притягиваются друг к другу по тому же самому закону. Вышивая свой узор, Природа пользуется лишь самыми длинными нитями, и всякий, даже самый маленький образчик его может открыть нам глаза на строение целого.

Лекция 2.

Связь математики с физикой

Если задуматься о приложениях математики и физики, то совершенно очевидно, что математика будет полезна там, где мы имеем дело с большим числом объектов в сложной обстановке. В биологии, к примеру, действие вируса на бактерию не дает никакой пищи для математики. В микроскоп мы увидим, что проворный маленький вирус находит какое-то место в причудливой бактерии (все они имеют разную форму) и либо вводит в нее свою ДНК, либо не вводит. Но если мы будем экспериментировать с миллионами и миллионами бактерий и вирусов, то сможем очень многое узнать о поведении вирусов в среднем. Мы можем использовать математику для того, чтобы находить среднее, для того, чтобы выяснить, развиваются ли вирусы в бактериях, какие виды развиваются и в каком количестве; подобным образом мы можем изучать генетику, мутации и т.п.

Возьмем другой, более тривиальный пример. Представим себе огромную шахматную доску, на которой играют в шахматы или шашки. Каждый отдельный ход - операция не математическая или математически очень простая. Но нетрудно сообразить, что на доске с множеством фигур оценку наилучших ходов, ходов просто хороших или плохих можно сделать только после очень глубокого размышления, ибо каждый ход таит в себе огромное количество последствий. Тут необходимы абстрактные рассуждения и, следовательно, математика. Еще один пример - переключение в вычислительных машинах. Если у вас всего один переключатель, который может быть либо включен, либо выключен, то ничего особенно математического тут нет, хотя математики любят начинать именно с этого. Но чтобы предугадать поведение системы с множеством соединений и проводов, нужна математика.

Я хочу сказать с самого начала, что математика приносит огромную пользу физике там, где речь идет о деталях сложных явлений, если установлены основные правила игры. И если бы я говорил только о взаимоотношении математики и физики, то большую часть времени отвел бы именно этому вопросу. Но поскольку лекции посвящены характеру физических законов, я не имею возможности подробно разбирать, что происходит в сложных ситуациях, и прямо перейду к своей теме - характеру основных законов.

Если снова обратиться к нашим шахматам, то основные законы здесь - это правила, по которым движутся фигуры. Математику можно использовать в сложной обстановке, чтобы сообразить, какие ходы в данных обстоятельствах наиболее выгодны. Но для того чтобы выразить простую суть основных законов, требуется очень мало математики. В шахматах это можно сделать на нашем обычном языке.

В физике же и для основных законов нам нужна математика. Я приведу два примера: в одном математика, по существу, необязательна, а в другом необходима. Первый - закон физики, называемый законом Фарадея, который гласит. что при электролизе количество осажденного вещества пропорционально силе тока и времени его действия. Иначе говоря, количество осажденного вещества пропорционально заряду, проходящему через систему. Звучит это очень математически, но на самом деле все сводится к тому, что электроны, проходящие по проводам, несут только по одному заряду. В частности, можно предположить, что каждый электрон вызывает осаждение одного атома. Тогда число осажденных атомов равно числу прошедших электронов, т.е. пропорционально заряду, протекшему по проводу. Таким образом, этот закон, который кажется математическим, в основе своей прост и на самом деле не требует знания математики. Для осаждения одного атома нужен один электрон - это, конечно, математика, но не та математика, о которой мы здесь говорим.

Второй пример - это закон тяготения Ньютона, который мы рассматривали в предыдущей лекции. Я привел вам уравнение

F = G(mm' / r 2)

чтобы поразить вас тем, насколько быстро математические символы могут передавать информацию. Я говорил, что сила пропорциональна произведению масс двух тел и обратно пропорциональна квадрату расстояния между ними, а также что тела реагируют на силы, изменяя свою скорость в направлении действия силы на величину, пропорциональную силе и обратно пропорциональную своим массам. Как вы видите, все это слова, и было совсем не обязательно писать уравнение. Тем не менее здесь есть математика, и мы можем спросить себя, почему такой закон может быть основным законом.

Что делает планета? Неужели она смотрит на Солнце, видит, насколько оно удалено, и вычисляет на своем арифмометре обратный квадрат расстояния, чтобы узнать, как нужно двигаться? Ясно, что это не объяснение механизма гравитации! Вам, может быть, захочется взглянуть поглубже, и многие пытались это сделать. Еще Ньютона спрашивали о его теории: "Но ведь она ничего не говорит, она ничего не объясняет?" Ньютон отвечал: "Она говорит, как движутся тела. Этого должно быть достаточно. Я сказал вам, какони движутся, а не почему".

Но людей зачастую трудно удовлетворить, не объяснив им механизм, и я расскажу об одной из теорий, которые выдвигались в качестве объяснения гравитации. Согласно этой теории тяготение представляет собой результат многих отдельных воздействий, и этим объясняется, почему закон Ньютона связан с математикой.

Предположим, что мир повсюду полон частиц, пролетающих сквозь нас с очень большой скоростью. Они летят во всех направлениях - просто проносятся мимо, но некоторые из них попадают в нас. Мы и Солнце практически прозрачны для них, практически, но не полностью, и некоторые из них нас ударяют. Посмотрим, к чему это должно привести.

На рис. 12 С- Солнце, 3- Земля. Если бы Солнца не было, то частицы обстреливали бы Землю со всех сторон, барабанили по ней и каждая упавшая частица немного подталкивала бы Землю. Это не сдвинет Землю ни в каком определенном направлении, потому что с одного боку налетает столько же частиц, сколько с другого, снизу столько же, сколько сверху. Однако если Солнце на месте, то оно в какой-то мере поглощает частицы, летящие с этой стороны, потому что некоторые из них, попадая в Солнце, не проходят его насквозь.

Следовательно, со стороны Солнца к Земле прилетает меньше частиц, чем с других сторон, ибо они наталкиваются на препятствие - на Солнце. Нетрудно понять, что чем дальше Солнце, тем меньшую долю частиц, попадающих на Землю, оно будет задерживать. Солнце будет казаться меньше - как раз пропорционально квадрату расстояния. Поэтому со стороны Солнца на Землю будет действовать импульс, обратно пропорциональный квадрату расстояния. Он будет представлять собой результат большого количества простых операций - ударов, которые один за другим сыплются со всех сторон. Таким образом, в этом математическом соотношении нет ничего странного, ибо основная операция значительно проще, чем подсчет обратного квадрата расстояния. Подсчет производят сами частицы, ударяясь о Землю.