The Theory of Everything: The Origin and Fate of the Universe
Chapter 5 - FIFTH LECTURE - THE ORIGIN AND FATE OF THE...T H E O R I G I N A N D F A T E O F T H E U N I V E R S EThroughout the 1970s I had been working mainly on black holes. However,n 1981 my interest in questions about the origin of the universe wasreawakened when I attended a conference on cosmology in the Vatican. TheCatholic church had made a bad mistake with Galileo when it tried to laydown the law on a question of science, declaring that the sun went around theEarth. Now, centuries later, it had decided it would be better to invite a num-ber of experts to advise it on cosmology.At the end of the conference the participants were granted an audience withthe pope. He told us that it was okay to study the evolution of the universeafter the big bang, but we should not inquire into the big bang itself becausethat was the moment of creation and therefore the work of God.I was glad then that he did not know the subject of the talk I had just given atthe conference. I had no desire to share the fate of Galileo; I have a lot of sym-pathy with Galileo, partly because I was born exactly three hundred years afterhis death.THE HOT BIG BANG MODELIn order to explain what my paper was about, I shall first describe the generallyaccepted history of the universe, according to what is known as the “hot bigbang model.” This assumes that the universe is described by a Friedmannmodel, right back to the big bang. In such models one finds that as the uni-verse expands, the temperature of the matter and radiation in it will go down.Since temperature is simply a measure of the average energy of the particles,this cooling of the universe will have a major effect on the matter in it. At veryhigh temperatures, particles will be moving around so fast that they can escapeany attraction toward each other caused by the nuclear or electromagneticforces. But as they cooled off, one would expect particles that attract eachother to start to clump together.At the big bang itself, the universe had zero size and so must have been infi-nitely hot. But as the universe expanded, the temperature of the radiationwould have decreased. One second after the big bang it would have fallen toabout ten thousand million degrees. This is about a thousand times the tem-perature at the center of the sun, but temperatures as high as this are reachedin H-bomb explosions. At this time the universe would have contained mostlyphotons, electrons, and neutrinos and their antiparticles, together with someprotons and neutrons.As the universe continued to expand and the temperature to drop, the rate atwhich electrons and the electron pairs were being produced in collisions wouldhave fallen below the rate at which they were being destroyed by annihilation.So most of the electrons and antielectrons would have annihilated each otherto produce more photons, leaving behind only a few electrons.About one hundred seconds after the big bang, the temperature would havefallen to one thousand million degrees, the temperature inside the hotteststars. At this temperature, protons and neutrons would no longer have suffi-cient energy to escape the attraction of the strong nuclear force. They wouldstart to combine together to produce the nuclei of atoms of deuterium, orheavy hydrogen, which contain one proton and one neutron. The deuteriumnuclei would then have combined with more protons and neutrons to makehelium nuclei, which contained two protons and two neutrons. There wouldalso be small amounts of a couple of heavier elements, lithium and beryllium.One can calculate that in the hot big bang model about a quarter of the pro-tons and neutrons would have been converted into helium nuclei, along witha small amount of heavy hydrogen and other elements. The remaining neu-trons would have decayed into protons, which are the nuclei of ordinaryhydrogen atoms. These predictions agree very well with what is observed.The hot big bang model also predicts that we should be able to observe theradiation left over from the hot early stages. However, the temperature wouldhave been reduced to a few degrees above absolute zero by the expansion of theuniverse. This is the explanation of the microwave background of radiationthat was discovered by Penzias and Wilson in 1965. We are thereforethoroughly confident that we have the right picture, at least back to about onesecond after the big bang. Within only a few hours of the big bang, theproduction of helium and other elements would have stopped. And after that,for the next million years or so, the universe would have just continuedexpanding, without anything much happening. Eventually, once the tempera-ture had dropped to a few thousand degrees, the electrons and nuclei would nolonger have had enough energy to overcome the electromagnetic attractionbetween them. They would then have started combining to form atoms.The universe as a whole would have continued expanding and cooling.However, in regions that were slightly denser than average, the expansionwould have been slowed down by extra gravitational attraction. This wouldeventually stop expansion in some regions and cause them to start to recol-lapse. As they were collapsing, the gravitational pull of matter outside theseregions might start them rotating slightly. As the collapsing region gotsmaller, it would spin faster-just as skaters spinning on ice spin faster as thedraw in their arms. Eventually, when the region got small enough, it would bespinning fast enough to balance the attraction of gravity. In this way, disklikerotating galaxies were born.As time went on, the gas in the galaxies would break up into smaller cloudsthat would collapse under their own gravity. As these contracted, the temper-ature of the gas would increase until it became hot enough to start nuclearreactions. These would convert the hydrogen into more helium, and the heatgiven off would raise the pressure, and so stop the clouds from contracting anyfurther. They would remain in this state for a long time as stars like our sun,burning hydrogen into helium and radiating the energy as heat and light.More massive stars would need to be hotter to balance their stronger gravita-tional attraction. This would make the nuclear fusion reactions proceed somuch more rapidly that they would use up their hydrogen in as little as a hun-dred million years. They would then contract slightly and, as they heated upfurther, would start to convert helium into heavier elements like carbon oroxygen. This, however, would not release much more energy, so a crisis wouldoccur, as I described in my lecture on black holes.What happens next is not completely clear, but it seems likely that the centralregions of the star would collapse to a very dense state, such as a neutron staror black hole. The outer regions of the star may get blown off in a tremendousexplosion called a supernova, which would outshine all the other stars in thegalaxy. Some of the heavier elements produced near the end of the star’s lifewould be flung back into the gas in the galaxy. They would provide some ofthe raw material for the next generation of stars.Our own sun contains about 2 percent of these heavier elements because it isa second- or third-generation star. It was formed some five thousand millionyears ago out of a cloud of rotating gas containing the debris of earlier super-novas. Most of the gas in that cloud went to form the sun or got blown away.However, a small amount of the heavier elements collected together to formthe bodies that now orbit the sun as planets like the Earth.OPEN QUESTIONSThis picture of a universe that started off very hot and cooled as it expanded isin agreement with all the observational evidence that we have today.Nevertheless, it leaves a number of important questions unanswered. First, whywas the early universe so hot? Second, why is the universe so uniform on a largescale-why does it look the same at all points of space and in all directions?Third, why did the universe start out with so nearly the critical rate of expan-sion to just avoid recollapse? If the rate of expansion one second after the bigbang had been smaller by even one part in a hundred thousand millionmillion, the universe would have recollapsed before it ever reached its presentsize. On the other hand, if the expansion rate at one second had been largerby the same amount, the universe would have expanded so much that it wouldbe effectively empty now.Fourth, despite the fact that the universe is so uniform and homogenous on alarge scale, it contains local lumps such as stars and galaxies. These are thoughtto have developed from small differences in the density of the early universefrom one region to another. What was the origin of these density fluctuations?The general theory of relativity, on its own, cannot explain these features oranswer these questions. This is because it predicts that the universe started offwith infinite density at the big bang singularity. At the singularity, general rel-ativity and all other physical laws would break down. One cannot predict whatwould come out of the singularity. As I explained before, this means that onemight as well cut any events before the big bang out of the theory, because theycan have no effect on what we observe. Space-time would have a boundary-a beginning at the big bang. Why should the universe have started off at thebig bang in just such a way as to lead to the state we observe today? Why is theuniverse so uniform, and expanding at just the critical rate to avoid recollapse?One would feel happier about this if one could show that quite a number ofdifferent initial configurations for the universe would have evolved to producea universe like the one we observe.If this is the case, a universe that developed from some sort of random initialconditions should contain a number of regions that are like what we observe.There might also be regions that were very different. However, these regionswould probably not be suitable for the formation of galaxies and stars. Theseare essential prerequisites for the development of intelligent life, at least as weknow it. Thus, these regions would not contain any beings to observe that theywere different.When one considers cosmology, one has to take into account the selectionprinciple that we live in a region of the universe that is suitable for intelligentlife. This fairly obvious and elementary consideration is sometimes called theanthropic principle. Suppose, on the other hand, that the initial state of theuniverse had to be chosen extremely carefully to lead to something like whatwe see around us. Then the universe would be unlikely to contain any regionin which life would appear.In the hot big bang model that I described earlier, there was not enough timein the early universe for heat to have flowed from one region to another. Thismeans that different regions of the universe would have had to have startedout with exactly the same temperature in order to account for the fact that themicrowave background has the same temperature in every direction we look.Also, the initial rate of expansion would have had to be chosen very preciselyfor the universe not to have recollapsed before now. This means that the ini-tial state of the universe must have been very carefully chosen indeed if thehot big bang model was correct right back to the beginning of time. It wouldbe very difficult to explain why the universe should have begun in just thisway, except as the act of a God who intended to create beings like us.THE INFLATIONARY MODELIn order to avoid this difficulty with the very early stages of the hot big bangmodel, Alan Guth at the Massachusetts Institute of Technology put forward anew model. In this, many different initial configurations could have evolved tosomething like the present universe. He suggested that the early universe mighthave had a period of very rapid, or exponential, expansion. This expansion issaid to be inflationary-an analogy with the inflation in prices that occurs to agreater or lesser degree in every country. The world record for price inflationwas probably in Germany after the first war, when the price of a loaf of breadwent from under a mark to millions of marks in a few months. But the inflationwe think may have occurred in the size of the universe was much greater eventhan that-a million million million million million times in only a tiny frac-tion of a second. Of course, that was before the present government.Guth suggested that the universe started out from the big bang very hot. Onewould expect that at such high temperatures, the strong and weak nuclearforces and the electromagnetic force would all be unified into a single for