Выбрать главу

Выяснение вопроса взаимного влияния систем пред-ставляет сложную задачу, так как они образуют тесно пере-плетённую сеть в многомерном пространстве. Например, любая фирма представляет собою сосредоточение элементов многих других систем и иерархии: отраслевые министерства, территориальные органы власти, банковские, страховые орга-низации, торговые и налоговые организации и др. Каждый элемент в системе участвует во многих системных иерархиях. Поэтому прогноз их деятельности сложен и требует тщатель-ного информационного обеспечения. Такое же многоиерархи-ческое строение имеют, например, клетки любого живого ор-ганизма.

Системами могут быть и мысленные модели при проек-тировании реальных систем для оптимизации последних. На-пример, моделью может служить поисковое поле для приня-тия оптимального решения по отбору полимеров. Известны все полимерные материалы и классификация потребуемых изделий из них, а также известны критерии качества. Реше-ние заключается в последовательном сужении поискового поля при выяснении оптимального материала для конк-ретного изделия или оптимального изделия из конкретногo материала.

2. ЕДИНСТВО МАССЫ, ЭНЕРГИИ И

НЕГЭНТРОПИИ В СИСТЕМЕ

В условиях дифференциации наук и распространения редукционистских теорий возникло очень много кажуще изолированных моделей процессов, объектов, законов. В действительности мир един, процессы разного направления протекают в системах одновременно. Единство обусловлено тем, что общее начало ? объединённое суперполе едино для всех объектов, явлений и систем. Согласованно и параллель-но развиваются и многие кажуще противоположные явления. В любой системе одновременно могут протекать следующие процессы: подвижность (превращения) и инертность (неиз-менчивость), изменение координат в многомерном прост-ранстве и стремление сохранять своё состояние, прогрессив-ное и регрессивное развитие, возникновение и разрушение структур, изменчивость и наследственность, случайные и де-терминированные процессы, свобода и упорядоченность эле-ментов.

В системах параллельно протекают два противополож-ных процесса: изменение ОЭ и ОНГ. Энтропия в общем яв-ляется показателем неопределённости, беспорядка, разнообра-зия, хаоса, равновесия в системе [ 10 ]. Негэнтропию часто ошибочно дефинируют как энтропию с отрицательным зна-ком. Это может вызывать большие недоразумения. Негэнт-ропия (ОНГ) действительно измеряется в тех же единицах как энтропия (например в битах). Направление её действи-тельно противоположное энтропии. Её увеличение вызывает такое же уменьшение энтропии. Однако, эти величины из-меняются в системе по самостоятельным закономерностям и их абсолютные значения мало зависят друг от друга. Негэнт-ропия является мерой порядка, упорядоченности, внутренной структуры, связанной информации. При увеличении обобщён-ной энтропии (ОЭ, гл. 4) увеличиваются размерность системы (количество независимых переменных, факторов) и их масштабы, а также возможности поиска более эффек-тивных решений. Одновременно с ростом ОЭ увеличивается и неопределённость системы, вероятность принятия непра-вильного решения, а также расширяются размеры прост-ранства поиска. Для того, чтобы уменьшить неопределённость системы, необходимо ввести в неё обобщённую негэнтропию (ОНГ), информацию, упорядоченность.

Таким образом, при прогрессивном развитии в системе увеличивается больше ОНГ, чем ОЭ. При деструкции больше увеличивается ОЭ. Имеются разные комбинации одновремен-ного изменения ОЭ и ОНГ. Если система обладает небольшой ОЭ, то и ОНГ туда ввести можно мало и для её развития нет условий (ОНГ ОЭ).

Много споров возникло при исследованиях взаимо-действия вещественных, энергетических и информационных систем. В практической жизни, экономике и технике их часто рассматривают раздельно. Действительно, часто целесообраз-но исследовать материальные (вещественные) балансы, пото-ки и ресурсы. Отдельно рассматриваются соответствующие энергетические и информационные ресурсы. При составлении технических проектов или бизнеспланов такие раздельные расчёты дают много данных для оценки эффективности решений. Однако, сразу бросается в глаза, что в любых сис-темах и организациях эти категории существуют все вместе. В любой фирме занимаются как материальными, так и энерге-тическими и информационными ресурсами. Вместо информа-ционных потоков в экономике больше занимаются денежными средствами. Как мы увидим в дальнейшем, деньги в опреде-лённом смысле заменяют информацию. В любом живом орга-низме также протекают одновременно и взаимосвязанно как материальные, так и энергетические и информационные про-цессы. Но и объекты неживой природы, даже любой кусок камня, обладают не только массой (весом) вещества, но и внутренней энергией и разного вида cвязанной информацией (негэнтропией, химической, физической, кристаллографи-ческой и др.).

Если начинать искать, то не удастся найти в мире ни одной системы, которая содержала бы в отдельности вещест-во, энергию или информацию. Даже самые маленькие кванты энергии - фотоны, имеют по формулам Эйнштейна массу, а величина кванта уже сама собой является информацией, тем более возникающие волны и их когеренция. Единство массы и энергии, возможность их измерения в единицах массы или энергии вытекает уже из формулы Эйнштейна

Ео = mc2 , где: Ео - энергия m - масса, с - скорость света

При движении частиц сохраняется та же формула, но необходимо учесть изменение массы в зависимости от ско-рости (связанной с энергией). Труднее выяснить единую природу негэнтропии с энергией и массой. Для этого имеется формула Бриллюэна. Такие явления единства можно объяс-нять только тем, что в начальном общем суперполе все эти категории - вещество, энергия и информация, имеют единую природу. Одним из компонентов там является гравитационное поле, которое имеет сильно антиэнтропийный характер (про-тиводействует энтропии).

По соотношению Бриллюэна для получения 1 бита не-обходимо израсходовать по меньшей мере k . ln2 > k единиц негэнтропии

k = 1,38 . 10-23 дж / град. (константа Больцмана)

Объединяя формулы Эйнштейна и Бриллюэна можно любую форму материи или системы перевести одну в другую с приближёнными эквивалентными соотношениями:

1 г ? 1014 дж ? 1037 бит

Например, негэнтропию (ОНГ) можно выразить в еди-ницах массы (граммы) или энергии (джоулы). Практически получают ничтожно малые, пока неизмеримые величины мас-сы или энергии и сами процессы изменения формы существо-вания материи пока малоуправляемые. Мозг человека в виде памяти содержит информацию, оцениваемую около 5 . 1010 бит, вместе с макроструктурами около 1017 бит, что соот-ветствует массе около 1 . 10-20 г, т.е. в настоящее время неиз-меримо малой величине.

Следует подчеркнуть, что в случае перерасчётов вещест-ва, энергии или негэнтропии в единицы другой формы реаль-но не происходит перехода вещества в энергию или информа-цию или наоборот. Объективно существует реальное супер-поле, которое в любом участке имеет свойства как вещества (массы), так и энергии и негэнтропии. Суперполе локально существует в виде менее сгущённых (негэнтропия) и более сгущённых систем (энергия или вещество), но разделение этих трёх форм невозможно. Теоретически можно любую из трёх форм выразить в единицах другой формы. Например, в единицах битов можно выражать не только энергию, но и массу вещества. При этом энергию рассматривают как уплот-нённый участок суперполя. Обобщить необходимо и законы сохранения. Закон сохранения массы правилен и в насто-ящее время, но в общую сумму массы следует включать и массу энергии, движения и негэнтропии. После открытия Эйнштейна формулировали закон сохранения материи (то есть суммы массы и энергии).

е (Е + Мс2) = соnst.

В настоящее время следует закон сохранения выразить в ещё более общей форме:

В изолированной системе общее количество обоб-щённой негэнтропии (в т.ч. в виде вещества или энергии) остается постоянной, независимо от каких бы то ни было изменений, происходящих в этой системе. е ОНГ + Е + М . с2 = соnst.

k 107 . k