Выбрать главу

- "Если поле существует, то оно должно полностью определяться материальными частицами, которые его порождают, а поэтому у него нет никаких независимых степеней свободы. А тогда исчезают и бесконечности, связанные со степенями свободы".

- "Универсального способа преобразования классической механики в квантовую теорию не существует, хотя большинство учебников пытается убедить вас в обратном".

Приведённые парадоксы квантовой теории, изложенные учёными, рассматриваем как "каталитические целеуказатели", подлежащие "новому рассмотрению" с позиций концепции двух видов энергии в процессе нашего исследования вантовой среды вакуума - как энергии. Полагаем, что они уже дали определённые результаты, изложенные в наших книгах.

Аналогичные утверждения и положения квантовой механики и квантовой электроники введены в большинство учебников и справочных пособий по техническим и естественнонаучным дисциплинам вузов России.

Однако, теоретические исследования и эксперименты, проведённые в 50-х годах прошлого столетия Э. Ферми, Дж. Пастом и С. Улафом, анализируя на ЭВМ математическую модель движения энергии, обнаружили в "статическом солитоне" - геометрической модели энергии - ещё одно странное свойство, формально противоречащее его стабильности. На каких бы высоких частотах ни производилась накачка энергией модели гипотетически свободного солитона, энергия накачки не усредняется по частотам: с высоких частот она неизменно перераспределяется на низшие собственные частоты солитона. Это означает, что при поступлении энергии квантового вакуума в материальный солитон (любой материальный объект природы) он всегда "должен излучать энергию" - фундаментальная основа тепловидения, что не удивительно, т.к. распределение плотности энергии в пространстве по частотам должно подчиняться распределению Больцмана - это эмпирический факт. Однако солитон (электрон) остаётся стабильным. Вопрос, откуда берётся энергия, поступающая в солитон? - снова остался открытым.

Проблема физической природы стабильности энергии и названное свойство в солитоне в общепринятых математических моделях движения солитонов учитывается и снимается чисто методологически - выбором формы уравнений и начальных условий, которые математикам удается находить.

Итак, поступление энергии в сложную систему извне - внутри системы не усредняется, и распределение энергии в системе происходит чрезвычайно избирательно, а попытки распространения вероятностной интерпретации знаменитого уравнения Шрёдингера в исследование ядра атома - оказались безуспешными.

Под будущей адаптацией логических операций в концепцию двух видов энергии надо понимать унификацию алгебраических транскрипций законов математической логики, топологии и физических законов, открытых в макромасштабах вещественного мира в XIX-XXв.в. и составление справочника частотных диапазонов действия всех законов, прежде всего физических законов и частотных диапазонов существования материальных объектов вещественного мира. Границы этих диапазонов однозначно отображают границы применимости этих законов. Всё это понадобится при проектировании преобразователей энергии квантового вакуума.

Подобные рассуждения неизбежно подводят к выводу, что система уравнений Максвелла в электродинамике - лишь малая часть истины - 'верхушка айсберга': система должна быть дополнена новыми членами - производными возрастающих порядков. С подобными идеями Нильс Бор в 1931г. был категорически не согласен:

ВЫСКАЗЫВАНИЕ НИЛЬСА БОРА и ЛЬВА ЛАНДАУ.

- "На первый взгляд может показаться, что необходимо, и было даже предложено добавить новые члены к знаменитому уравнению Максвелла для электромагнитного поля в свободном пространстве. Но теория Максвелла оказалась слишком последовательной и слишком изящной, чтобы допускать такого рода модификацию. Может только возникнуть вопрос об обобщении теории в целом или, скорее, о переводе её на новый физический язык, приспособленный для того, чтобы учесть СУЩЕСТВЕННУЮ НЕДЕЛИМОСТЬ ЭЛЕМЕНТАРНЫХ ПРОЦЕССОВ, таким образом, чтобы каждая черта теории Максвелла нашла соответствующую черту в новом формализме" (9).

ЛЕВ ЛАНДАУ - любимый ученик Н. Бора, получивший Нобелевскую премию за полуфеноменологическое объяснение сверхпроводимости гелия, а также - несколько государственных премий, в т.ч. за создание классического цикла учебников 'Курс теоретической физики', полагал:

'В квантовой механике принципиально не существует никакой возможности следить в отдельности за каждой из одинаковых частиц и тем самым различать их. Можно сказать, что в квантовой механике одинаковые частицы полностью теряют свою индивидуальность' - 1962г. (10, с. 252).

Современники, общавшиеся с Ландау, признавали его гением - самым оригинальным учёным в науке со странностями в личной жизни.

Итак, Нильс Бор провозгласил неделимость элементарных процессов. Это логично: если процесс элементарный, то речь должна идти о точке-частице, составляющей энергетический процесс, в которую он был однажды "стянут", и с которой больше ничего не происходит. Но если вещественный мир - "взбаламученный ноль" - по Циолковскому, не имеющий начала, окончания и разрывов сплошности среды - по Декарту, то частица - всего лишь локальный участок периодического автоколебательного процесса - сжатия-расширения эфира (энергии, квантовой среды вакуума) - окрестности которого недоступны для прямых измерений. Так же логично и то, что частицы энергии, среди которых нет тождественных частиц, при загрубении их размеров-масштабов становятся для внешнего Наблюдателя неразличимыми.

Тем не менее, российские учёные И. Е. Иродов и Л. А. Бессонов в 2001-2003г.г. дополнили систему уравнений Максвелла ещё одним уравнением, на 'свой страх и риск' ввели его в вузовские учебники по теоретической электротехнике. Учёные показали, что электроэнергия "мгновенно" передаётся от источника к потребителю. Но передача происходит не по проводам, а через окружающее пространство в ортогональном к проводящей поверхности проводника направлении - через изоляцию (11, 12, 13). Вернее по проводам передаётся лишь один из двух видов - низкочастотный вид энергии, а в ортогональном направлении, через изоляцию и далее через окружающее пространство, к клеммам источник-приёмник, передаётся другой вид - высокочастотная составляющая энергии из частотного диапазона преобразований двух видов энергии, проявляющегося свойствами электромагнитной энергии.

В концепции двух видов энергии это объясняется чрезвычайно высокой частотой одной из форм лучистой энергии, для которой многие неметаллические (немагнитные) материалы "прозрачны". Учитывая также, что этот вид энергии находится в парадоксальном резонансном взаимодействии с другим видом - низкочастотным электрическим током, текущим в форме электронов по проводам.

Обращаем внимание Читателя на то, что в данном случае, в концепции двух видов энергии, под "окружающим пространством" надо понимать не "привычную нам" философскую сущность, необыкновенно стабильную, физическая природа которой непонятна даже учёным - а систему стоячих высокочастотных волн, образованных встречными разночастотными волнами двух видов энергии, наложенных друг на друга.

Окружающее нас трёхмерное пространство - ещё одна из форм существования высокочастотной лучистой энергии, представляет собой слившуюся систему стоячих волн, также разночастотных, с неразличимыми параметрами - итог действия суперпозиции над несчётным множеством резонансно взаимосвязанных волн. Электромагнитная энергия электрической технической системы также образована двумя видами энергии. Это напряжение в сети - высокочастотный вид потенциальной энергии, один из двух видов, распространяющийся через резонансную с ней локальную волновую составляющую названного пространства. Будучи вектором, оно парадоксально резонансно электромагнитному полю, создаваемому электрическим током в электропроводах. Они взаимно преобразуются резонансно и инвариантно, несмотря на различия в частотах и физических содержаниях этих полей, т.к. эта частотная составляющая пространства свойствами электромагнитного поля не обладает, учитывая, что её параметры для прямых измерений недоступны. Электрический ток в проводах - низкочастотная составляющая другого вида энергии, т.к. её переносчиками являются "низкочастотные электроны". Они также разночастотны, и среди них нет тождественных. Из этого следует, что скорость распространения напряжения не зависит от физической природы проводника, а движение электронов - зависит, что подтверждается эмпирическими фактами. Впрочем, это известно давно и стало (по умолчанию и вопреки запрету Н. Бора) основой промышленной электроники и электротехники. Тогда, что такое короткое замыкание проводников и какова роль изоляции проводников?