Выбрать главу

Верный рыцарь приличий, Фило воспринял его замечание как упрек и мужественно приготовился выслушать лекцию, на которую сам же набился. Он, правда, попросил не посвящать его в сложные доказательства. Пусть ему объяснят самую суть — с него и этого довольно!

— Поистине мир полон противоречий, — развел руками незнакомец. — Ты заранее собираешься принять на веру все, что тебе скажут, тогда как суть как раз в том и состоит, что пятый постулат на веру принимать не желают… Впрочем, дело это и впрямь до того непростое, что мне только и остается выполнить твою просьбу.

Он устроился поудобнее и начал свой рассказ с того, что всякая сложившаяся наука, в особенности наука точная, похожа на прекрасное, совершенное здание, сложенное из хорошо отшлифованных и плотно пригнанных друг к другу каменных плит. Но не всегда, однако, здание было зданием. Когда-то вместо него существовали необработанные, разбросанные по всему свету камни. Сначала их было немного, но постепенно число их возрастало, а вместе с тем возрастала и потребность собрать эти камни, объединить их в прочную соразмерную постройку.

Камень, как известно, добывают в каменоломнях. В обычных каменоломнях работают рабы и узники, нередко немощные телом, темные разумом. В каменоломнях науки трудятся могучие духом, дерзкие и свободные мыслью.

И все-таки не всякий, кому удается обтесать свой камень в науке, способен возвести из многих камней, добытых другими, безупречное строение. Для этого нужно быть не только каменотесом, но и зодчим — человеком, который заранее представляет себе все здание в целом и знает, каким образом уложить камни так, чтобы каждый из них стал надежной опорой другому.

Такими зодчими были и упомянутый уже Мухаммед ал-Хорезми, и древний грек Аполлоний, который собрал, изучил, заново продумал все, что знали до него о конических сечениях, и создал собственное учение.

Но самый, пожалуй, великий из великих зодчих науки — это Эвклид: он воздвиг монументальное здание геометрии, которое доныне остается непревзойденным образцом математической логики.

Все накопленные до него богатства геометрии Эвклид объединил в могучую систему, где каждая теорема служит опорой последующей.

Многие пытались это сделать и до него. Но богатырский труд лишь ему оказался под силу.

— Как и всякое здание, — продолжал незнакомец, — геометрия Эвклида покоится на фундаменте. Это пять постулатов, девять аксиом и двадцать три начальных определения. Первый постулат гласит…

Услыхав столь многообещающее начало, Фило просто в ужас пришел. Неужто на него обрушится такое обилие новых сведений разом? Ведь он, если говорить по совести, даже не знает разницы между постулатом и аксиомой…

— Разница, в сущности, невелика, — сказал незнакомец. — И то и другое — положения, вытекающие из нашего опыта и принимаемые на веру без доказательств по той причине, что доказать их невозможно.

— Действительно, — подтвердил Мате, — разница настолько несущественна, что у нас постулаты попросту причисляются к аксиомам.

— Ну, приравнять постулаты Эвклида к аксиомам — дело нехитрое, — возразил незнакомец. — Куда сложнее уравнять их между собой. Очень уж они неравноценны. Первые четыре — совершенно надежны и вполне могут быть приняты без доказательств. Зато пятый…

Он выразительно умолк, и вялое равнодушие Фило тотчас сменилось жадным любопытством.

— Ну, — понукал он, — что же ты запнулся?

— Потому и запнулся, что пятый постулат, вместо того чтобы исполнять обязанности краеугольного камня, предпочел превратиться в камень преткновения, — пояснил незнакомец. — Это так называемый постулат о параллельных, утверждающий, что если при пересечении двух прямых третьей внутренние односторонние углы меньше двух прямых, то они пересекутся по ту сторону, где сумма этих углов меньше.

— У нас этот постулат излагают короче, — вставил Мате. — Через точку, лежащую вне прямой, в той же плоскости можно провести только одну прямую, параллельную первой.

— Тоже неплохо, — согласился незнакомец. — Постулат о параллельных нередка излагают по-разному. Хайям, например, заменяет его другим, равнозначным утверждением: два перпендикуляра к одной прямой не могут ни сходиться, ни расходиться. Но, к сожалению, это столь же неубедительно, сколь и формулировка Эвклида…

— Не понимаю, что тут неубедительного? — недоумевал Фило. — Ведь даже младенцу ясно, что через точку, лежащую в той же плоскости, что и прямая, можно провести только одну параллельную.