— Вот вам и первые простые числа.
— А последние какие?
— Никакие, разумеется. По той причине, что простым числам, так же как натуральным, конца нет.
— И вы беретесь это доказать?
— Зачем же доказывать то, что давным-давно доказал Эвклид? Другое дело, если вы спросите, какое наибольшее простое число известно на сегодняшний день…
— В самом деле, какое?
— Два в степени девятнадцать тысяч девятьсот тридцать семь минус единица. Это сокращенно! А чтобы изобразить его полностью, нужно шесть тысяч две цифры.
Фило свистнул. Вот так простое число! Хоть на телеграфной ленте записывай…
— И все же от этого оно не перестает быть простым. Что действительно непросто, так это найти закон, по которому простые числа распределяются среди чисел натуральных.
— Как? — удивился Фило. — Разве он до сих пор не известен?
— Нет. Впрочем, выдающийся русский математик Пафнутий Львович Чебышёв нашел метод, позволяющий приближенно определять, сколько простых чисел расположено на отрезке натурального ряда. Но это уж разговор не для вас, — поспешно прервал себя Мате, заметив, что Фило приготовился к новому вопросу. — Кстати, знаете вы, что когда-то способ Эратосфена напоминал решето не только в переносном, но и в прямом смысле? Эратосфен писал числа на дощечке, покрытой воском. При этом составные числа он не зачеркивал, а протыкал острой палочкой. И вскоре дощечка и впрямь начинала походить на решето, хотя и не сквозное.
— Вероятно, решето все-таки не единственное изобретение Эратосфена? — тактично полюбопытствовал Фило.
Вместо ответа Мате вышел в прихожую, порылся в рюкзаке и принес какой-то странный прибор. Осмотрев его, Фило заметил не без юмора, что Эратосфен питал пристрастие к домашнему хозяйству: сперва изобрел решето, потом — подставку для чайника.
Он приподнял чайник, обнажив лежащую под ним складную металлическую гармошку. Мате подтвердил, что некоторое сходство действительно есть, но весь фокус в том, что с помощью прибора Эратосфена решалась одна из знаменитых задач древности, тогда как подставка на это решительно не способна.
— Любезный Дон-Кихот, — вкрадчиво попросил Фило, — просветите вашего верного Санчо. О каких знаменитых задачах речь?
Мате посмотрел на друга с досадой и в то же время с тайной гордостью. Право же, любопытство его становится угрожающим!
— А кто выпустил джинна из бутылки? — парировал Фило. — Не вы ли? Вот и расхлебывайте.
Делийская задача
— Нам известны три неразрешимые задачи древности, — начал Мате, — квадратура круга, трисекция угла и удвоение куба…
— Почему же неразрешимые? — с ходу перебил Фило. — Вы же сами сказали, что Эратосфен решил одну из них посредством своего замысловатого прибора.
— Решить-то решил, но незаконно. Потому что по условию решать эти задачи можно было, пользуясь только двумя простейшими приспособлениями: линейкой без делений и циркулем.
— Что за глупое условие! — фыркнул Фило. — Не все ли равно, каким способом решать? Главное — добиться правильного ответа.
— Ошибаетесь, уважаемый Санчо. Решить задачу, ничего не вычисляя, манипулируя только линейкой и циркулем, — большое искусство. Оно требует изобретательности, остроумия, я бы даже сказал — таланта. Представьте себе: вам даны три отрезка, которые должны стать медианами некоего треугольника. Попробуйте построить этот треугольник, не прибегая ни к чему, кроме слепой линейки и циркуля.
— Увы! — вздохнул Фило. — Для этого надо знать геометрию.
— Золотые слова, хоть и не новые. Нечто подобное сказал Платон еще в четвертом веке до нашей эры. На фронтоне его афинской Академии было начертано: «Не знающий геометрии да не входит сюда!» И вот почему именно к Платону обратились за помощью делийцы, когда произошла история с удвоением куба.
— Вас не поймешь, — рассердился Фило. — То вы говорили, что удвоение куба — задача, теперь это уже история…
Но Мате попросил его не придираться к словам: удвоение куба, как и всякая задача, имеет свою историю.
В IV веке до нашей эры на острове Де́лос в городе Де́льфах вспыхнула эпидемия чумы. Что в таких случаях думают древние люди? Они думают, что прогневили богов, и, естественно, стараются узнать, каким образом их умилостивить. А посему делийцы обратились за советом к знаменитому дельфийскому оракулу, и тот изрек им волю небожителей: бедствие прекратится, когда в дельфийском храме воздвигнут жертвенник, объемом ровно вдвое больше прежнего, причем форма жертвенника — куб — должна оставаться неизменной.