— Исключите из этих двух пропорций смущающий вас игрек, и вы снова получите х3 = 2, — объяснил он, доставая блокнот. — Смотрите. Из пропорции 1 : х = х : у следует, что у = х2. Подставьте в равенство хy = 2 вместо игрека х2, и получится, что х3 = 2. Теперь вы видите, что от преобразования Менехма наше уравнение ничуть не изменилось.
— Зачем же было переливать из пустого в порожнее?
— Как зачем? Да ведь вместо одного уравнения мы получили два: ху = 2 и у = х2.
— Подумаешь, прибыль!
— И очень большая. Потому что ху = 2 — это не что иное, как уравнение равносторонней гиперболы, а у = х2 — уравнение параболы!
— Конические сечения!
— В том-то и дело. И стало быть, теперь мы можем изобразить наше уравнение в виде кривых на чертеже. Для этого начертим сперва оси координат…
— Вот еще! — фыркнул Фило. — Мы такого в школе не проходили.
— Не мы, а вы, — уточнил Мате. — Вы не проходили. Но теперь вам от этого не отвертеться. Так вот, достопочтенный Санчо, благоволите запомнить, что оси координат существуют для того, чтобы определять положение точки на плоскости или в пространстве. Само собой, для нахождения точки на плоскости достаточно двух координат. Если же точка находится в пространстве, которое, как известно, трехмерно, тут уж потребуются три координаты.
— Ну, это нам ни к чему, — быстро ввернул Фило. — Мы ведь ищем точку на плоскости. Стало быть, хватит с нас и двух координат.
— Прекрасно! — неожиданно похвалил Мате. — Раз вы уразумели это, значит, запросто поймете, как строятся графики уравнений. Итак, вычертим оси координат, иначе говоря — две взаимно перпендикулярные прямые. Одну из них — горизонтальную — назовем осью иксов, другую — вертикальную — осью игреков. Точку их пересечения обозначим буквой О. Начнем с уравнения параболы…
— Игрек равняется иксу в квадрате, — сейчас же припомнил Фило.
— Вот именно. В чем особенность этого уравнения? А в том, что, каким бы ни было числовое значение икса, игрек всегда будет равен квадрату этого числа. Допустим, икс равен нулю. Тогда игрек равен…
— …тоже нулю.
— Правильно. Вот и найдем эту точку на плоскости.
— А ее искать нечего: вот она! — Фило ткнул пальцем в точку О.
— Совершенно верно. Иначе, точка с координатами ноль — ноль совпадает с началом координат. Пошли дальше. Допустим, что икс равен единице. Тогда игрек тоже равен единице, так ведь? Найдем точку с координатами единица — единица. Для этого отложим сперва единицу на оси иксов вправо от точки О…
— В каких единицах длины?
— В каких угодно. Но лучше все-таки не в километрах.
— Тогда в сантиметрах?
— Прекрасно. Итак, вправо от точки О по оси иксов откладываем один сантиметр. Из конца этого отрезка восстанавливаем перпендикуляр также длиной в один сантиметр. Конец этого перпендикуляра и есть искомая точка с координатами один — один. Допустим теперь, что значение икс не единица, а двойка. Тогда игрек равен…
— Четырем!
— Браво! После этого гениального заявления вам остается лишь найти точку с координатами два — четыре самостоятельно.
Фило отложил два сантиметра от точки О по оси иксов, восстановил из конца этого отрезка перпендикуляр, равный четырем сантиметрам, и посмотрел на Мате победоносно, как актер, ожидающий бурных оваций. Но оваций не последовало. Мате сухо потребовал, чтобы Фило нашел точку при х = 3, потом х = 4, и отвязался от него только тогда, когда места на листке уже не осталось.
— Ну, вот, — процедил он, окинув чертеж критическим оком. — Мы получили несколько точек, удовлетворяющих уравнению у = х2. Все они лежат на нашей параболе. Стало быть, остается соединить их плавной кривой — и график уравнения, то бишь парабола, перед нами.
Фило недовольно осмотрел вычерченную Мате линию.
— Позвольте, — сказал он, — какая же это парабола? Помнится, там, на базаре, вы показали мне кривую вроде рогатки…
— А тут половина рогатки.
— Где же вторая половина?
— По левую сторону оси игреков, где координаты х отрицательны. А так как отрицательное число, возведенное в квадрат, становится положительным, значит, игрек тоже будет у нас всегда числом положительным. Вот и выходит, что координаты игрек и справа и слева от вертикальной оси совершенно одинаковы. А раз так, значит, левая часть параболы симметрична правой. Дорисуем ее, если хотите, — и целая рогатка в вашем распоряжении. А теперь, когда с параболой покончено, тем же способом вычертим гиперболу: ху = 2.