Выбрать главу

Фило почесал в затылке. Сразу видно, тут придется попотеть!

— Почему вы думаете? — осведомился Мате.

— Так ведь в первом уравнении икс и игрек были по разные стороны равенства, а тут в общей куче…

— Раз это вас смущает, отделим их друг от друга. Нетрудно выяснить, что у = 2/х. Заменим первое уравнение вторым — и дело с концом.

— Ага! — кивнул Фило. — Тогда начнем, как полагается, с х = 0…

— Стоп! Как известно, деление на нуль запрещено. Так что начнем с х = 1. Тогда у = 2/1, или попросту двум…

— Значит, находим точку с координатами один — два, — подхватил Фило, орудуя карандашом.

— Дальше.

— Дальше нахожу точку при х = 2. Игрек при этом равен единице. При х = 3 игрек равен двум третям… Постойте, как же так? — Фило запнулся. — Выходит, чем больше икс, тем меньше игрек?

— Правильно подмечено. Чем больше икс, тем меньше игрек, и обратно: чем меньше будет становиться икс, стремясь к нулю, тем больше будет игрек, стремясь к бесконечности.

А теперь соединим, наконец, найденные нами точки одной линией — и гипербола готова.

— К тому же не наполовину, а целиком. Точь-в-точь как та, что вы нарисовали в Исфахане.

— Должен вас огорчить. То, что я нарисовал в Исфахане, полной гиперболой не было, как не был полной конической поверхностью и тот бумажный фунтик, который мы с вами рассекали воображаемыми плоскостями. Потому что полная коническая поверхность состоит не из одного, а из двух одинаковых фунтиков, соприкасающихся вершинами. И стало быть, в каждом из этих фунтиков образуется только одна ветвь гиперболы, в то время как полная гипербола состоит из двух ветвей.

— Значит, на чертеже должна быть еще одна ветвь.

— Ее нетрудно получить, придавая иксам отрицательные значения. Только, в отличие от параболы, игрек при этом тоже будет принимать отрицательные значения.

— Так, так, так, — озабоченно пробормотал Фило. — Икс отрицательный. Значит, откладывать его следует по оси иксов влево. Но вот вопрос: на какой оси откладывать отрицательные игреки?

— Это уж пустяки. Положительные игреки расположены вверх по оси иксов, стало быть, отрицательные…

— Вниз! — сообразил Фило и принялся откладывать отрицательные координаты точек: -1, -2, -2, -1, -3, -2/3, и, наконец -1/2, -4. — Теперь, — сказал он, любуясь своей работой, — объединим все это хозяйство общей линией, и вторая ветвь гиперболы налицо. Ура, ура и в третий раз ура! Остается выяснить главное: для чего все это делалось?

— Для того чтобы понять, каким образом Менехм решал задачу об удвоении куба, — пояснил Мате. — А решал он ее так: изображал обе кривые на одном чертеже и рассматривал при этом только ту часть координатной плоскости, на которой эти кривые пересекаются. Точка пересечения их — обозначим ее буквой А — удовлетворяет и первому и второму уравнениям, а следовательно, и уравнению х3 = 2. Опустим из этой точки перпендикуляр на ось иксов, обозначив основание перпендикуляра буквой В, и длина ребра удвоенного куба найдена: это отрезок ОВ. Ему-то и равен х. Вот как конические сечения помогли Менехму решить один из видов кубического уравнения. А Хайяму они помогли решить все не рассмотренные до него виды.

— Кажется, он насчитал их четырнадцать, — вспомнил Фило.

— Собственно говоря, в наше время все эти виды сводятся к одному. Да и способ решения изменился. Теперь кубические уравнения решаются по формуле итальянского математика XVI века Карда́но.

Фило разочарованно нахохлился. Как же так? Выходит, Хайям трудился впустую. Но Мате сказал, что в науке ничего не бывает впустую. Конечно, трудам Хайяма не суждено было повлиять на европейскую математику — эта честь досталась ал-Хорезми. Зато они повлияли на математиков Востока. Идеи Хайяма были подхвачены и развиты другими, более поздними учеными. Кроме того, не следует забывать, что в некоторых вопросах Хайям произвел настоящую революцию. Достаточно вспомнить его календарную реформу. Или учение о числе… Между прочим, Хайям первый признал иррациональные числа и, таким образом, открыто выступил против Аристотеля, который во всем остальном оставался для него непререкаемым авторитетом.

— Чудно́! Неужели было время, когда иррациональных чисел не признавали? — удивился Фило.

— Было время, когда не признавали и отрицательных, — сказал Мате. — Вот хоть два минус пять. Мы это рассматриваем как сложение положительного и отрицательного чисел: 2 + (-5) = -3. С точки зрения древних, такое вычитание невозможно. Уравнение х + 2 = 0, по их мнению, также чистейшая нелепость, ибо нет такого числа, которое, будучи прибавлено к двум, равнялось бы нулю. А по-нашему, такое число есть: это минус 2. Поэтому уравнение вполне разрешимо. Просто корень у него отрицательный.