Выбрать главу

— Смотрите-ка, снова числа Фибоначчи!

Но Мате объяснил, что иначе и быть не могло: ведь каждое число Фибоначчи есть разность между двумя соседними числами ряда. Составив тем же способом следующие строки, он продолжил таблицу и получил числовой треугольник:

— Вы, конечно, понимаете, — добавил Мате, — что треугольник может быть продолжен до бесконечности. Так вот, я заметил, что, путешествуя по наклонным рядам этого треугольника, начиная с единицы, можно совершать самые разнообразные зигзаги и каждый раз получать полный ряд чисел Фибоначчи.

Он снова обратился к чертежу и наметил несколько маршрутов по треугольнику.

— А знаете, это и впрямь чертовски занимательно, — признался Фило.

— Погодите, я еще не кончил, — остановил его Мате. — Повернем тот же треугольник по ходу часовой стрелки градусов этак на сорок, заодно увеличив его на несколько строк, а потом сложим числа каждой горизонтальной строки.

Он выписал треугольник, поставив на уровне каждой строки сумму ее чисел:

— Во-первых, заметьте, что вдоль левой боковой стороны этого числового треугольника расположены последовательные числа Фибоначчи, — сказал он.

— Вижу, — подтвердил Фило. — А во-вторых?

— Во-вторых, исследуя полученные суммы, я увидел, что каждую из них можно в свою очередь представить в виде суммы ряда простых чисел. Для порядка начнем с единицы — ведь она как-никак тоже число простое.

1 = 1 (1 слагаемое)

3 = 3 (1 слагаемое)

10 = 3 + 7 (2 слагаемых)

29 = 3 + 7 + 19 (3 слагаемых)

81 = 3 + 7 + 19 + 23 + 29 (5 слагаемых)

220 = 3 + 7 + 19 + 23 + 29 + 31 + 37 + 71 (8 слагаемых)

589 = 3 + 7 + 19 + 23 + 29 + 31 + 37 + 43 + 67 + 71 + 79 + 83 + 97 (13 слагаемых)

1563 = 3 + 7 + 19 + 23 + 29 + 31 + 37 + 43 + 67 + 71 + 79 + 83 + 97 + 101 + 103 + 107 + 109 + 113 + 131 + 137 + 173 (21 слагаемое)

— Чуете? — спросил Мате, закончив таблицу. — Количество простых чисел, входящих в каждую сумму, тоже образует ряд Фибоначчи.

— Но это же замечательное открытие! — бурно обрадовался Фило.

— До открытия далеко. Я исследовал только восемь строк треугольника, а их бесконечное множество.

— Так найдите общее доказательство.

— Только и всего? Попробуйте-ка сами.

— Э, нет, слуга покорный! Предоставим это мессеру Леонардо, — отшутился Фило. — К тому же вы все еще не ответили на мой вопрос.

— Наоборот! Я только и делаю, что отвечаю на него. Я показал вам, как перспективна игра с числами вообще и с числами Фибоначчи в частности. Она буквально нафарширована непредвиденными находками, которые могут привести к самым неожиданным практическим результатам. Вот почему я так высоко ставлю этот удивительный числовой ряд. А теперь…

Он сунул руку в карман, позвякал медяшками и без всякого видимого перехода предложил отгадать, сколько там монет.

Фило надулся: факир он, что ли?

— Ладно! — смилостивился Мате. — Я не заставлю вас гадать ни на картах, ни на кофейной гуще. Вот вам наводящие данные. Здесь у меня трех- и пятикопеечные монеты на сумму 49 копеек.

— Так бы сразу и сказали. Теперь я, по крайней мере, понимаю, что должен составить уравнение, и притом весьма простое. Обозначим число пятачков через х, а число трехкопеечных монет — через y. Тогда пятикопеечных монет будет на сумму 5x, а трехкопеечных — на Зу. Общая сумма их, как известно, 49 копеек. Следовательно, 5x + 3y = 49.

— Ставлю вам пять с плюсом, — сказал Мате. — Уравнение отличное. Но как вы его решите?

Фило призадумался. Попробуйте-ка решить уравнение с двумя неизвестными!

— Не беда, — утешил Мате. — Мы ведь с вами знаем, что число монет каждого достоинства может быть только целым, а не дробным. Так давайте подберем эти числа. Начнем, естественно, с самого маленького целого числа: с единицы. Иначе говоря, предположим, что пятачок у меня всего один. Пишем: x = 1. Теперь подставим это в наше уравнение: 5 × 1 +3y = 49. Отсюда Зу = 44/3.

— Простите, 44/3 не целое число…

— Прекрасно. Значит, наше предположение отпадает. Теперь допустим, что х = 2. Тогда 5 × 2 + 3y = 49. Отсюда 3y = 39, у = 13. Получается, что у меня два пятака и тринадцать трехкопеечных монет.

— Браво! — ликовал Фило. — Задача решена.