Выбрать главу

— Экий вы быстрый! А ну как есть другое решение? А вдруг у меня не два, а пять пятачков? Возможно это или невозможно?

— Сейчас узнаем. 5 × 5 + 3y = 49. Отсюда Зу = 24, у = 8. Вот так компот! Выходит, у задачи не одно решение.

— Как видите.

— Поискать, что ли, другие?

Перебрав варианты х = 3, 4, 6 и 7, Фило убедился, что ни один из них невозможен. Зато при х = 8 игрек оказался равным 3. Таким образом к прежним двум решениям прибавилось третье. Однако вариант х = 9 опять не подошел. Фило хотел уже приравнять икс десяти, но Мате, смеясь, остановил его: ведь в этом случае одних пятачков было бы на 50 копеек, а у него всего 49.

— Итак, — подытожил он, — мы выяснили, что уравнение имеет три решения: 1) х = 2, y = 13; 2) x = 5, у = 8, 3) х = 8, у = 3. Следовательно, в кармане у меня либо 15, либо 13, либо 11 монет.

Фило неодобрительно поджал губы. Ну и точность! Тут уж бабушка не надвое, а натрое гадала.

— Потому-то уравнения такого рода и называются неопределенными, — разъяснил Мате. — Кроме того, наше уравнение отличается от других неопределенных еще и тем, что по условию ответ его должен быть обязательно в целых числах.

— Но кому же это нужны уравнения с несколькими ответами?

— Не скажите. Неопределенные уравнения интересовали математиков с глубокой древности. Ими занимались еще в Древней Индии. Но особенно подробно изучал их грек Диофант. Он рассмотрел многие неопределенные уравнения вплоть до четвертой степени и нашел для каждого все возможные решения в целых числах. Потому-то уравнения такого рода стали называть диофантовыми, хотя общего метода решения их Диофант не обнаружил.

— И все-таки. Для чего нужны такие уравнения? Где они используются?

— Везде. В любой науке, в любой отрасли народного хозяйства, где мы имеем дело только с целыми числами. Может ли фабрика выпустить не целое число шляп, скажем, 245 с четвертью? Можно ли запустить в космос полтора спутника? Бывает ли в табуне не целое число лошадей? Разумеется, нет. Таких задач, которые должны быть решены только в целых числах, великое множество. Понимаете теперь, какое важное место в нашей жизни занимают диофантовы уравнения?

— Понимаю, — сдался Фило. — Но вам не кажется, что мы слишком отдалились от темы? Говорили о числах Фибоначчи, потом ни с того ни с сего перескочили на диофантовы уравнения…

— Это вы называете «ни с того ни с сего»? Да ведь между ними прямая связь! Да будет вам известно, что десятая проблема Гильберта, решенная посредством чисел Фибоначчи, касается именно диофантовых уравнений. Гильберт спрашивает, каким способом можно установить после конечного числа операций, разрешимо ли данное диофантово уравнение в целых числах. И оказалось, что такого способа в общем виде не существует.

— Ууу! — разочарованно протянул Фило. — Стало быть, десятая проблема Гильберта оказалась совершенно бесполезной?

Мате сердито замахал руками. Что за чепуха! Во-первых, математический метод, которым была исследована десятая проблема, представляет огромную ценность уже сам по себе. Во-вторых, результат этого исследования избавил ученых от дальнейших поисков. И наконец, в-третьих, — десятая проблема Гильберта привела к возникновению новой ветви математики — теории алгоритмов. А это такое…

Он не договорил — его прервал взволнованный голос Фило:

— Мате, Мате! Взгляните на результат нашего уравнения! Два, три, пять, восемь, тринадцать… Это же числа Фибоначчи!

Мате оторопел. Что за чудеса! Как он сразу не заметил? Впрочем… впрочем, может быть, это случайное совпадение? Попробовать разве проверить, какие решения получаются при других суммах. Вот хоть для четырнадцати копеек.

Он быстро перебрал все возможные варианты и нашел, что это уравнение имеет всего-навсего одно решение: х = 1, y = 3.

— Снова числа Фибоначчи! — определил Фило. — Возьмем еще какую-нибудь сумму. Двадцать одну копейку.

На этот раз тоже получилось одно решение, и опять-таки в числах Фибоначчи: х = 3, у = 2.

Мате испытующе покосился на друга.

— Ну, — сказал он насмешливо, — почему вы не кричите, что мы с вами сделали великое открытие?

Фило погрозил ему пальцем. Теперь он стреляный воробей — знает, что три частных случая ни о чем еще не говорят.

— А что будем делать с поисками общей закономерности? — снова съехидничал Мате. — Опять спихнем на мессера Леонардо?

— Хорошо бы. Но может быть, займемся сами? Переберем не три, а три тысячи три варианта, а потом возьмем да выведем какую-нибудь сногсшибательную формулу…