Выбрать главу

Фило потрясен. Этот Декарт — настоящий фокусник! Выходит на сцену с тремя точками, а через несколько минут все кругом завалено биссектрисами, медианами, вписанными и описанными окружностями… Ну, а Дезарг? Как вычислял эти штуковины он?

Оказывается, никак. Он вообще ничего не вычислял — только чертил. Проектировал разные геометрические тела и фигуры на всевозможные поверхности и изучал свойства проекций (оттого-то геометрия его и называется проективной). Возьмет, например, конус, проведет через его вершину различные плоскости, спроектирует на них круговое сечение конуса и исследует, что у него получилось.

Но Фило уже вошел во вкус, и общие слова его не устраивают. Он непременно хочет знать, что именно получилось у Дезарга, и, услыхав, что это окружность, эллипс, парабола и гипербола, впадает в тихое умиление. Подумать только, то самое, что они проходили на исфаханском базаре!

— По-моему, мы там проходили мимо верблюда, — острит Мате.

Но Фило не до шуток. Неужели Мате не помнит? Они брали бумажный фунтик, то есть конус, и рассекали его воображаемыми плоскостями. При этом у них, совсем как у Дезарга, тоже получались окружность, эллипс, парабола и гипербола.

— Вся штука в том, что Дезарг добывал их другим способом: с помощью проекций. Понимаете?

— Вполне. Кстати, что такое проекция?

Мате закатывает глаза с видом мученика. Не знать, что такое проекция! Что ж, придется объяснять. Но вот вопрос: где? Сказать по правде, ему еще не доводилось чертить, кувыркаясь в воздухе.

— Знаете что? Давайте посидим во-он на той крыше, — вдохновенно предлагает Фило. — Она вроде бы не такая покатая.

— Удачнейший выбор, мсье, — живо откликается бес. — Крыша руанской судебной палаты. Самое подходящее место, чтобы судить о чем бы то ни было, в том числе о достоинствах метода Дезарга. Ко-ко…

Через минуту они уже сидят на твердой черепичной почве, для удобства покрытой Асмодеевым плащом.

— Может, позавтракаем? — осторожно заикается Фило.

— Вы, кажется, проекциями интересовались, — отбривает Мате и лезет за блокнотом. — Начнем с проекции по кличке «Центральная».

Он набрасывает контур некой произвольной фигуры, на некотором расстоянии от нее обозначает плоскость…

— Допустим, нам надо спроектировать эту фигуру на эту плоскость. Выберем точку вне заданной фигуры — назовем ее центром проекций — и проведем из нее лучи через точки контура до пересечения с плоскостью. Точки пересечения объединим одной линией — и проекция готова.

— Как просто! — удивляется Фило. — Похоже на то, что мысленно делает художник, когда хочет изобразить предмет в перспективе.

— Всегда говорил, что искусству без науки не прожить, — ввертывает Мате. — Но давайте все же не отвлекаться. Следующая разновидность — проектирование параллельное. В этом случае лучи проводятся не из одного центра, а из каждой точки проектируемого контура.

Фило тычет в чертеж пухлым пальчиком:

— А почему ваши лучи косые?

— Так мне хочется. Имею полное право проводить лучи в любом направлении, с тем условием, чтобы все они были параллельны друг другу. Если же я проведу их перпендикулярно к плоскости проекции, это уже будет проекция ортогональная. Самая необходимая из всех, потому что используется в начертательной геометрии.

Фило понимающе кивает. Начерталка! У соседа-студента от этого слова нервный тик начинается. Мате подтверждает, что предмет и в самом деле свирепый. Но, увы, без него, так же, впрочем, как и без сопромата, нет настоящего инженера-конструктора…

— Наивосхитительнейший мсье Мате, — взмаливается бес, делая еще одну попытку вернуть расположение разобиженного математика, — не могли бы вы познакомить меня хоть с одной из работ Дезарга? Я так давно об этом мечтаю!

— Хм… — Мате с досадой отмечает, что злость его на Асмодея испаряется с катастрофической быстротой. — Как-нибудь в другой раз. Впрочем… вот вам одна, зато чрезвычайно важная, теорема проективной геометрии. Она так и называется: теорема Дезарга.

Он рисует небольшой треугольник, поясняя, что размеры сторон в данном случае значения не имеют, ставит где-то слева от него точку и проводит из нее три луча так, что каждый из них проходит через одну из вершин треугольника.

— Центральное проектирование, — глубокомысленно определяет Фило.

— Не совсем, — морщится Мате. — Вернее даже, совсем не. Ну да сейчас не в том дело… Строим второй треугольник, тоже с тем расчетом, чтобы каждая из трех его вершин оказалась на одном из трех лучей… Незачем говорить, что таких треугольников можно нагородить сколько угодно. А теперь продолжим в одном и в другом треугольнике те стороны, концы которых лежат на общих лучах, до их пересечения. Точки пересечения обозначим пожирнее и увидим, что все они лежат на одной прямой.