Бес изучает чертеж. Так вот она какая, теорема Дезарга! Очень оригинальна… Теперь бы разузнать доказательство…
Тонкий намек его ни к чему, ибо если сам Асмодей жаждет получить объяснения, то Мате просто умирает от желания дать их. Он уже готовится произнести свое любимое «итак», но Фило, который в это время на собственном опыте постигает справедливость пословицы «голод не тетка», зажимает ему рот ладонью.
— Только не теперь! Вы что, хотите, чтобы я съел сам себя?
Вид у него такой воинственный, что Мате уступает. В конце концов, для доказательств есть у них домашние итоги. Хотя кое-что надо бы подытожить сейчас: они так увлеклись разговором о двух великих «Д», что совсем забыли о великом «П».
— О Паскале, что ли? — нетерпеливо расшифровывает Фило. — По-моему, тут и так все ясно! Паскаль — последователь Дезарга.
Но Мате столь куцый вывод не устраивает. Последователи, говорит он, бывают разные. Одни рабски повторяют кем-то найденное, другие — творят заново. В данном случае не то главное, что Паскаль, совсем еще, в сущности, мальчик, в совершенстве овладел сложными приемами Дезарга, а то, что он проявил себя зрелым ученым и обогатил метод учителя. Доказательство тому — «Опыт о конических сечениях», юношеский трактат Паскаля. Он невелик — всего 53 строки. Но изложенные в нем теоремы заставили говорить о себе всю ученую Францию. А одна из них — теорема о шестивершиннике (Дезарг назвал ее «великой Паска́левой») — навсегда останется в числе главных теорем проективной геометрии.
— Ага! — азартно уличает Фило. — Вот когда вы раскрыли свои карты. Вы, как и Паскаль, тоже сторонник Дезарга. И не вздумайте отпираться.
Колючие глазки Мате разглядывают его с любопытством. Ну и упрямец! Умри, а скажи ему, кто лучше: Декарт или Дезарг. Но что же делать, если оба хороши!
— Вот и прекрасно! — весьма непоследовательно сдается Фило. — А теперь — завтракать, завтракать и в третий раз завтракать!
Он достает нечто завернутое в белоснежную салфетку и жестом первоклассного официанта отгибает крахмальные уголки.
— Прошу!
Мате подозрительно косится на содержимое свертка. Неужто паштет Генриха Второго? В таком случае, завтрак не для него. О, он отнюдь не привередлив. Но питаться паштетом двадцатилетней давности?! Асмодей, впрочем, убеждает его, что межвременны́е перелеты на свежести продуктов не отражаются, и мгновение спустя воздушное трио уплетает так, что за ушами трещит.
— Эх, хорош был завтрак! — говорит Фило, мечтательно орудуя зубочисткой. — К нему бы еще подходящий десерт…
— Могу предложить мою собственную теорему, — невозмутимо отзывается Мате.
Фило ядовито замечает, что имел в виду десерт, а не диссертацию. Но Мате говорит, что диссертация полезнее: от нее, по крайней мере, не толстеют.
Он вычерчивает треугольник («Совершенно произвольный, заметьте!»). На каждой из его сторон, снаружи («А можно и внутри, значения не имеет…»), строит еще по одному треугольнику — теперь уже равностороннему. Отмечает карандашом центры тяжести во всех трех, заново построенных, и соединяет их прямыми.
— Вот и всё! Обратите, пожалуйста, внимание на то, что пятый треугольник получился тоже равносторонний.
— Случайность? — предполагает Фило.
— Закономерность.
— Ну, это еще надо доказать…
— Вот и доказывайте. Кто ж вам мешает?
— Один?! — пугается Фило. — Без вашей помощи?
— Вот именно. Кстати, советую рассмотреть и два частных случая, когда первоначальный треугольник вырождается, то есть превращается в отрезок прямой. Это происходит либо тогда, когда одна из сторон «треугольника» равна сумме двух других, либо когда она равна нулю. Ну вот, на сей раз действительно всё.
Черт стремительно вскакивает и отвешивает один из самых своих изысканных, самых глубоких поклонов.
— Примите уверения в моей бесконечной признательности, наивосхитительнейший мсье Мате! Ваша теорема — лучший десерт в моей жизни. Во всяком случае, за последнее тысячелетие…
Камни Парижа
— Поехали? — говорит Асмодей, подмигивая плутовато скошенным глазом, и с места взвивается в небо. Фило и Мате едва успевают ухватиться за его пепельно-огненный плащ.