Гораздо выгоднее в этом отношении некоторые химические соединения водорода. Многого можно ожидать от металлических горючих, например, порошков алюминия, магния и других. При соединении с кислородом они выделяют весьма большие количества теплоты.
Есть окислитель еще более активный, чем даже сам кислород, — это фтор, химический элемент из так называемой группы галогенов. Любопытно, что фтор легко окисляет все вещества, включая кислород!
Фтор очень ядовит — в этом одно из препятствий к его использованию в межпланетных кораблях. И все-таки надо полагать, что фтористые соединения, в частности фтористый кислород, будут использованы как окислители. Найдет себе применение и озон, по своим окислительным свойствам также превосходящий кислород.
Подсчеты показывают, что применение наилучших из возможных химических топлив способно удвоить существующие скорости истечения, доведя их до 4–4,5 . Таков предел возможностей химического топлива.
Будем считать, что с=4,5 . Тогда по формуле Циолковского легко получить, что для скорости отрыва отношение
должно быть близко к 12. Как видите, выигрыш получился значительный, хотя конструктивные затруднения по существу сохранились.
В дальнейшем мы рассмотрим некоторые принципиально новые возможности решения проблемы, например, использование атомной энергии для реактивных двигателей, а сейчас остановимся на одном замечательном изобретении Циолковского, которое позволяет иным путем приблизиться к космическим скоростям.
Речь пойдет о так называемых составных ракетах.
Когда в прошлом полярные исследователи стремились достичь полюса, они применяли метод, несколько напоминающий идею составных ракет. В путь отправлялась большая группа путешественников, везущая с собой значительные запасы продовольствия. На определенных расстояниях друг от друга организовывались склады с таким количеством продовольствия, которое было необходимо для обратного возвращения. С каждой стоянки часть экспедиции возвращалась назад и лишь оставшаяся в конце концов небольшая группа исследователей штурмовала полюс. Так, например, были организованы антарктические экспедиции Амундсена и Роберта Скотта.
Представим себе теперь составную ракету Циолковского, состоящую из двух или нескольких звеньев, т. е. ракет, как бы вложенных друг в друга (рис. 10).
Рассмотрим, как летит двухступенчатая ракета.
При взлете с Земли действует только первая, «земная» ракета. Когда ее топливо израсходуется, земная ракета автоматически отделяется от второй «космической» ракеты, двигатель которой как раз в этот момент и начинает свою работу. «Земная» ракета спускается на Землю, а «космическая» продолжает полет, набирая нужную скорость.
Нетрудно сообразить, что составная ракета может достичь значительно бóльших скоростей, чем обычная. В самом деле, конечная скорость ракеты по формуле Циолковского зависит от отношения масс [6]. Представим себе две ракеты — одну обычную, «простую», а другую — составную. Пусть корпус первой из них весит 500 кГ и внутри ее находится 1500 кГ топлива. Это значит, что для простой ракеты отношение
равно 2000:500=4.
Допустим, что составная ракета состоит из двух одинаковых ракет весом до 250 кГ каждая. Будем считать, что в каждой из ракет содержится 750 кГ топлива.
Таким образом, общий вес составной ракеты и общее количество заключенного в ней топлива таково же, что и у простой ракеты.
Найдем теперь отношение для составной ракеты. Ее первоначальный вес 2000 кГ, но зато конечный вес равен весу только второй «космической» ракеты, так как «земная» ракета после израсходования топлива не будет принимать участия в дальнейшем полете. Следовательно, для составной ракеты отношение
равно 2000:250 = 8, т. е. вдвое больше, чем у простой ракеты.
Наш расчет не вполне точен, и более строгие вычисления, учитывающие ряд обстоятельств, в частности притяжение Земли, приводят к несколько меньшим результатам. Несмотря на это, выгода составных ракет очевидна. При межпланетных перелетах они найдут себе широкое применение.
Можно представить себе составную ракету, состоящую не из двух, а из большего числа звеньев. Проекты подобных «ракетных поездов» были рассмотрены Циолковским. Не следует думать, что с увеличением числа звеньев конечная скорость последней, «космической», ракеты быстро возрастает. Наоборот, по расчетам Циолковского этот рост происходит так медленно, что применение составных ракет из большого числа звеньев во многих случаях невыгодно. Конструировать такие ракетные поезда трудно, а выигрыш в скорости получается незначительным. Наиболее выгодными оказываются двух и трехступенчатые ракеты.