• малозатратное создание подпроцессов;
• предоставление методов, которые относительно упрощают обмен данными между процессами (вызовы с созданием подоболочки, перенаправление ввода/вывода, каналы, передача сообщений и сокеты);
• поддержка простых, прозрачных, текстовых форматов данных, которые могут передаваться посредством каналов и сокетов.
Малозатратное создание дочерних процессов и простое управление процессами являются весьма важными факторами для Unix-стиля программирования. В такой операционной системе, как VAX VMS, где запуск процессов является дорогой и медленной операцией, требующей специальных привилегий, программисты вынуждены создавать массивные монолиты, поскольку не имеют другого выбора. К счастью, семейство Unix отличается направленностью в сторону более низких издержек fork(2), а не в сторону более высоких. В частности, операционная система Linux особенно эффективна в этом отношении, подпроцессы создаются в ней быстрее, чем возникают параллельные процессы во многих других операционных системах[63].
Исторические причины подталкивают многих Unix-программистов мыслить понятиями множества взаимодействующих процессов по опыту shell-программирования. Оболочка относительно упрощает создание групп из множества соединенных каналами процессов, запущенных в приоритетном или фоновом режиме или с одновременным использованием обоих режимов.
В оставшейся части данной главы рассматриваются последствия малозатратного создания подпроцессов, а также описывается, как и когда применять каналы, сокеты и другие методы межпроцессного взаимодействия (IPC), для того чтобы разделить конструкцию на взаимодействующие процессы. (В следующей главе философия разделения функций применяется к проектированию интерфейсов.)
Тогда как выгода от разбиения программ на взаимодействующие процессы заключается в снижении глобальной сложности, затраты такого подхода связаны с необходимостью уделять больше внимания разработке протоколов, которые используются для передачи информации и команд между процессами. (В программных системах всех видов ошибки скапливаются в интерфейсах.)
В главе 5 рассматривается самый низкий уровень данной проблемы проектирования — каким образом располагать протоколы прикладного уровня, которые являются прозрачными, гибкими и расширяемыми. Однако эта проблема имеет второй, более высокий уровень, который в главе 5 не рассматривался, — это проектирование конечных автоматов для каждой стороны информационного обмена.
Не сложно применить хороший стиль к синтаксису протокола прикладного уровня таких моделей, как SMTP, BEEP или XML-RPC. Реальная сложность заключается не в синтаксисе протокола, а в его логике — проектировании протокола, который одновременно является достаточно выразительным и не имеет проблем
взаимоблокировки процессов. Почти так же важно то, что протокол должен быть видимым, для того чтобы быть выразительным и свободным от взаимоблокировки. Программисты, пытающиеся мысленно моделировать поведение взаимодействующих программ и проверять его корректность, должны иметь возможность поступать именно так.
Следовательно, в обсуждении данных проблем основное внимание уделено видам логики протоколов, каждый из которых программист свободно использует для каждого вида межпроцессного взаимодействия.
7.1. Отделение контроля сложности от настройки производительности
Прежде всего, необходимо избавиться от некоторых ложных целей. В данной главе обсуждение не касается использования одновременных операций для повышения производительности. Рассмотрение этой идеи до того как будет сформулирована ясная структура, которая сводит к минимуму глобальную сложность, является преждевременной оптимизацией, т.е. корнем всех зол (дальнейшее обсуждение приведено в главе 12).
Близкой ложной целью являются параллельные процессы (threads) (т.е. множество одновременно выполняемых процессов, совместно использующих одно адресное пространство памяти). Использование параллельных процессов — средство повышения производительности. Для того чтобы не уходить далеко от основной линии обсуждения, данная методика более подробно рассматривается в конце данной главы. Здесь достаточно сделать обобщение: параллельные процессы не уменьшают глобальную сложность, а скорее увеличивают ее, и поэтому следует избегать их использования, кроме случаев крайней необходимости.
63
См. результаты, приведенные в