Выбрать главу

Если расчет выполнен правильно, то результат, вероятно, удивил вас. Как же разрешить проблему?

* * *

Вход и выход. Практически во всех электронных схемах что-либо подается на вход (обычно это напряжение) и соответственно снимается с выхода (это также чаще всего напряжение). Например, с выхода усилителя звуковой частоты снимается напряжение (оно имеет переменное значение), которое в 100 раз превышает входное напряжение (изменяющееся аналогично). В этом усилителе выходное напряжение рассматривается для данного значения напряжения, действующего на входе. Инженеры пользуются понятием передаточной функции Н, которая представляет собой отношение напряжения, измеренного на выходе, к напряжению, действующему на входе; для вышеупомянутого усилителя звуковой частоты Н — это постоянная величина (Н = 100). К изучению усилителей мы приступим в следующей главе. Однако, уже сейчас, имея представление только о резисторах, мы рассмотрим делитель напряжения (по сути он является «де-усилителем»), который играет немаловажную роль в электронных схемах.

1.03. Делители напряжения

Мы приступаем к рассмотрению делителя напряжения, который используется в электронных схемах весьма широко. В любой настоящей схеме можно найти не меньше полдюжины делителей напряжения. Простейший делитель напряжения — это схема, которая для данного напряжения на входе создает на выходе напряжение, которое является некоторой частью входного. Простейший делитель представлен на рис. 1.5.

Рис. 1.5. Делитель напряжения. Приложенное напряжение Uвх создает на выходе напряжение Uвых (меньшее приложенного).

Что такое Uвых? Предположим здесь и далее, что нагрузки на выходе нет, тогда ток определяется следующим образом:

I = Uвх/(R1 + R2)

(Мы воспользовались формулой для определения сопротивления резистора и правилом для последовательного соединения резисторов). Тогда для R2

Uвых = I·R2 = UвхR2/(R1 + R2).

Обратите внимание, что выходное напряжение всегда меньше входного (или равно ему); поэтому мы говорим о делителе напряжения. Если одно из сопротивлений будет отрицательным, то можно получить усиление (т. е. выходное напряжение будет больше входного). Эта идея не так невероятна, как кажется на первый взгляд: вполне можно сделать устройство с отрицательными «приращениями» сопротивления (в качестве примера может служить туннельный диод) или просто с настоящим отрицательным сопротивлением (например, преобразователь с отрицательным импедансом, о котором мы поговорим позже). Однако эти примеры достаточно специфичны и не должны занимать сейчас ваше внимание.

Делители напряжения часто используют в схемах для того, чтобы получить заданное напряжение из большего постоянного (или переменного) напряжения.

Например, если в качестве R2 взять резистор с регулируемым сопротивлением (рис. 1.6, а), то мы получим не что иное, как схему с управляемым выходом; более простым путем комбинацию R1R2 можно получить, если у вас есть один резистор с переменным сопротивлением, или потенциометр (рис. 1.6, б).

Рис. 1.6. Регулируемый делитель напряжения может состоять из двух резисторов — с фиксированным сопротивлением и с переменным сопротивлением, или из потенциометра.

Простой делитель напряжения играет важную роль и в тот момент, когда вы задумываете схему: входное напряжение и сопротивление верхней части резистора могут представлять собой, скажем, выход усилителя, а сопротивление нижней части резистора — вход последующего каскада. В этом случае, воспользовавшись уравнением для делителя напряжения, можно определить, что поступит на вход последнего каскада.

Все сказанное станет более понятным, когда чуть позже мы познакомим вас с одним интересным фактом (имеется в виду теорема об эквивалентном преобразовании схем). А сейчас немного отвлечемся от нашей темы и поговорим об источниках тока и напряжения.

1.04. Источники тока и напряжения