Выбрать главу

Вот пример. Металлопленочный резистор RN55С с допуском 1 % имеет следующие паспортные данные: температурный коэффициент 5·10-5/°С в диапазоне от —55 до +175 °C; коэффициент стабильности по отношению к циклическим изменениям температуры и нагрузки, а также к пайке 0,25 %, к ударам и вибрации 0,1 %, к влажности 0,5 %. Для сравнения: у композитно-углеродистого резистора (фирма Allen-Bradley, тип СВ) эти параметры таковы: температурный коэффициент 3,3 % в диапазоне от 25 до 85 °C, пайка и циклическая нагрузка — соответственно +4 % и —6 %, удар и вибрация ±2 %, влажность 6 %. Из этих спецификаций становится очевидным, что нельзя просто отобрать (с помощью точного цифрового омметра) для работы в прецизионных цепях углеродистые резисторы, которые окажутся в пределах 1 % от нужного номинального значения, а нужно взять 1 %-ный резистор (или еще более точный), рассчитанный как на начальную точность, так и на долговременную стабильность. Для исключительно высокой точности следует применять ультрапрецизионные металлопленочные резисторы, такие как 5023Z фирмы Мерсо (5·10-6/°С и 0,025 %) или проволочные резисторы, выпускаемые с допуском 0,01 %. Дополнительную информацию о прецизионных резисторах см. в приложении Г.

«Нуль»-усилитель: погрешности элементов. В описываемой схеме (рис. 7.1) резисторы R3-R9 с допуском 0,01 %, примененные в цепи, устанавливающей коэффициент усиления, задают его очень точно. Как мы увидим далее, значение R3 выбирается путем компромисса, так как малые его значения уменьшают погрешность от тока сдвига U2, но увеличивают нагрев и тепловой дрейф U1. Когда задано R3, приходится усложнять цепь обратной связи для того, чтобы значения резисторов были меньше 301 кОм — наибольшего значения сопротивления доступных прецизионных резисторов с допуском 1 %. Этот прием обсуждался в разд. 4.19. Заметьте, что резисторы с допуском 1 % применены также в цепи аттенюатора начального отклонения (R11-R14); точность здесь несущественна, а металлопленочные резисторы взяты только из-за их хорошей стабильности.

Как показывает бюджет погрешности, в этой схеме наибольшую погрешность дает утечка конденсатора хранения С1. Конденсаторы, предназначенные для работы с малыми утечками, специфицируются по утечке — иногда в виде сопротивления утечки, иногда в виде постоянной времени (мегаом x микрофарада). В данной схеме С1 должен иметь значение не меньше по крайней мере нескольких микрофарад, чтобы была мала скорость заряда от токов погрешности других элементов (см. бюджет). В этом диапазоне емкостей наименьшей утечкой обладают полистиреновые, поликарбонатные и полисульфоновые конденсаторы.

Выбранный нами конденсатор имеет утечку по спецификации не более 1000 000 мегаом x микрофарад, т. е. параллельное сопротивление утечки составляет не менее 100000 МОм. Но даже при этом ток утечки при полном вых. напряжении (10 В) будет 100 пА; это соответствует скорости падения напряжения на выходе около 1 мВ/мин — составляющая погрешности, намного превышающая все остальные. Поэтому мы и добавили описанную выше схему компенсации тока утечки. Мы имеем право предположить, что действительная утечка может быть таким образом уменьшена до 0,1 от значения, указанного в паспорте конденсатора (на самом деле можно добиться намного большего улучшения). Большой стабильности от схемы компенсации утечки не требуется, поэтому наши требования здесь скромны. Как мы увидим при обсуждении влияния сдвигов напряжения, значение R15 намеренно выбирается большим, чтобы сдвиг напряжения U3 не создавал заметных погрешностей по току.

Говоря об ошибках, порождаемых внешними по отношению к самим усилителям элементами, следует отметить, что утечка у ПТ-ключа обычно лежит в диапазоне 1 нА — значение для данной схемы совершенно неприемлемое. Изящный и действенный метод борьбы с этим состоит в применении двух последовательно соединенных ПТ, где утечка Т2 создает на Т1 напряжение лишь в 1 мВ, а утечкой в суммирующей точке U3 можно пренебречь. Этот метод иногда используется в схемах интеграторов, (см. разд. 4.19). Мы также использовали его в усовершенствованной схеме пикового детектора в разд. 4.15. Как будет показано ниже, U3 выбирается таким, чтобы ток погрешности через конденсатор С1 оставался в пикоамперном диапазоне. Здесь всюду одинаковая философия: выбирайте конфигурацию схемы и типы элементов так, чтобы вписаться в бюджет погрешности. Иногда это очень трудная работа, требующая хитрых приемов, а в других случаях легко все решается стандартными способами.