Выбрать главу

Начиная с десятого столетия до Рождества Христова и вплоть до кульминации в начале XIX века, связанной с фигурой Галуа, повествование шаг за шагом поведет нас по пути завоевания уравнений — дороге, которая в конце концов зашла в тупик, когда математики попытались победить так называемую «квинтику» — уравнение, в которое входит пятая степень неизвестного. Перестали ли их методы работать из-за того, что в уравнении пятой степени крылись какие-то фундаментальные отличия? Или же можно было найти похожие, но более мощные методы, с помощью которых удалось бы получить формулы для его решения? Застряли ли математики из-за того, что встретили настоящую преграду, или им просто отказала сообразительность?

Важно понимать, что факт существования решений уравнений пятой степени был достоверно установлен. Вопрос состоял в том, всегда ли их можно представить алгебраической формулой. В 1821 году молодой норвежец Нильс Хенрик Абель доказал, что уравнение пятой степени нельзя решить алгебраическими средствами. Его доказательство, однако, было несколько таинственным и довольно непрямым. Он доказал, что никакого общего решения быть не может, но при этом оставалось непонятно почему.

Именно Галуа открыл, что невозможность решения уравнения пятой степени вытекает из симметрий этого уравнения. Если эти симметрии проходят, так сказать, тест Галуа (это означает, что они устроены некоторым очень специальным образом, который я не буду объяснять прямо сейчас), то уравнение можно решить с помощью алгебраической формулы. Если симметрии не проходят тест Галуа, то никакой такой формулы нет.

Общее уравнение пятой степени нельзя решить с помощью формулы, потому что у него неправильные симметрии.

Это эпического масштаба открытие составляет второй сюжет данной книги — сюжет группы, т.е. математического «исчисления симметрий». Галуа перенял древнюю математическую традицию — алгебру — и развил ее, создав новый инструмент для изучения симметрии.

Пусть пока что слова вроде «группы» останутся необъясненным специальным жаргоном. Когда значение таких слов станет важным для нашего рассказа, я приведу все необходимые пояснения. Но иногда нам будет требоваться всего лишь подходящий термин, чтобы иметь ориентиры в нашем рассказе. Если вы наткнетесь на что-то в этом роде — на то, что выглядит как профессиональный жаргон, но непосредственно не объясняется, — отнеситесь к этому просто как к указателю на нечто полезное, чей конкретный смысл пока не играет большой роли. Иногда это значение будет проясняться по мере дальнейшего чтения. «Группа» — как раз такой случай, но мы поймем, что это такое, не раньше, чем дойдем до середины книги.

Наш рассказ также затрагивает вопрос о любопытной значимости в математике некоторых конкретных чисел. Я говорю сейчас не о фундаментальных физических постоянных, а о математических постоянных, таких как π (греческая буква пи). Скорость света, например, могла бы в принципе иметь любое значение, но так случилось, что в нашей вселенной она составляет 300 000 метров в секунду. С другой стороны, число π имеет значение, немногим большее, чем 3,14159, и ничто в мире не может его изменить.

Неразрешимость уравнений пятой степени говорит нам, что, как и π, число 5 также довольно необычно. Это наименьшее число, для которого соответствующая группа симметрии не проходит тест Галуа. Другой занятный пример — это последовательность чисел 1, 2, 4, 8. Математики открыли серию расширений концепции обычных «вещественных» чисел — сначала строятся комплексные числа, а затем нечто, называемое кватернионами и, далее, октонионами. Они соответственно конструируются из двух экземпляров вещественных чисел, из четырех экземпляров и из восьми экземпляров. Кто же следующий? Естественная догадка — 16, но на самом деле дальнейших разумных расширений числовых систем нет. Это замечательный и глубокий факт. Он говорит нам, что число 8 — особенное, причем не в каком-нибудь поверхностном смысле, а в терминах глубинных структур самой математики.