Общая соленость первичного океана, определяемая содержанием анионов в продуктах дегазации мантии, была, вероятно, близка к современной, но соотношения катионов могли быть несколько иными, так как горные породы первичной коры были преимущественно ультраосновными и основными, и соотношения Na/K и Mg/K в них были много больше, чем в современных горных породах (первичное изобилие магния и повышенное соотношение Mg/Ca в древних породах подтверждается, например, наличием в архейских осадочных породах магнийсодержащих осадков- доломитов, MgCO3·CaCO3; таковы, например, известняки Булавайо в Южной Африке, возраст которых около 3 млрд. лет). Отметим еще, что в водах первичного океана отсутствовал анион окисленной серы, сульфат SO2-4, что служит одним из свидетельств отсутствия в атмосфере и в океане тех времен свободного кислорода (к этому вопросу мы еще вернемся несколько ниже). Действительно, первые сульфатные осадки - гипсы CaSO4·2H2O и ангидриты CaSO4 - обнаруживаются, по-видимому, лишь в гренвильских породах Канады возрастом около 1 млрд лет; кроме того, происходящее при окислении серы уменьшение изотопного отношения S32/S34 (в сере метеоритов равного 22.22, а в сульфатах современной морской воды - 21.76) впервые обнаруживается в сере древних осадков лишь в среднем протерозое. Таким образом, воды первичного океана были хлоридными, нейтральными (рН ≈ 7) и бессульфатными.
Приведем еще и другие свидетельства отсутствия в древних атмосфере и океане свободного кислорода. Одним из наиболее важных является высокое значение отношения FeO/Fe2O3, закисного железа к окисному в древних изверженных (и затем метаморфизованных), а также в осадочных породах, особенно в глинах, тогда как в современных океанических глубоководных красных глинах это отношение упало до 1/7 (двухвалентное железо могло в изобилии поступать в гидросферу при серпентинизации богатых фаялитом Fe2SiO4 мантийных гипербазитов в процессе образования земной коры). Это относится, в частности, ко встречающимся в катархее и архее железным рудам: основной рудной составляющей в них является магнетит - FeO·Fe2O3. Таковы, например, катархейские силикатно-магнетитовые руды приазовского типа и архейские полосчатые магнетит-сидерит-кремнистые руды алгомского типа (кстати, часто содержащие в виде примеси легко окисляющееся, но не окисленное сернистое железо - пирит FeS2 и пирротин FeSx. Среди карбонатов в то время доминировали сидериты FeCO3. Наконец, в архее часто встречаются осадочные железо-марганцевые руды, что также свидетельствует о недостатке кислорода, так как при таких условиях железо и марганец одинаково хорошо подвижны и мигрируют вместе, а при наличии кислорода их геохимические пути расходятся (железо теряет подвижность).
Аналогичные свидетельства дает присутствие в древних породах также и других легко окисляющихся, но не окисленных веществ: графита - в мощных слоях катархейских гнейсов и мраморов, лазурита (содержащего Na2S) - в катархейских карбонатных породах, свежих и хорошо окатанных зерен пирита FeS2
и уранинита U3O8 (а кое-где даже урановых смолок UO2), - в нижнепротерозойских золото-ураноносных месторождениях Коли-Калтимо в Финляндии, Блайнд-Ривер в Канаде, Витватерсранд в Южной Африке, Жакобина в Бразилии и в других местах. Наконец, о недостатке кислорода свидетельствуют сравнительно низкие темпы выветривания древних пород.
Свободный кислород мог образовываться в первичной атмосфере в результате фотодиссоциации небольшой доли молекул водяного пара, т. е. их разложения под действием жесткой компоненты солнечного излучения. Однако, по расчетам Л. Беркнера и Л. Маршалла [27], такое образование свободного кислорода должно быть весьма ограниченным, так как кислород сам поглощал излучение, расщепляющее молекулы воды. При равновесии между этими двумя процессами содержание кислорода в атмосфере не могло превышать одной тысячной современного уровня, на самом же деле оно было много меньше, так как равновесие никогда не достигалось: весь образующийся кислород быстро затрачивался на окисление атмосферных газов - СН4, СО, NH8 и H2S. Из-за недостатка свободного кислорода в атмосфере, по-видимому, отсутствовал озоновый экран, и тонкая первичная атмосфера была способной пропускать жесткие излучения Солнца до поверхности суши и океана.
Под действием жестких излучений Солнца, способных ускорять образование сложных молекул (фотокатализ), в океане, по-видимому еще в катархее, образовался ряд сложных органических веществ, до аминокислот включительно, - предполагать их образование необходимо, так как в архейских осадочных породах уже обнаруживаются следы жизни (при отсутствии озонового экрана появившейся, вероятно, именно в океане, где первичные организмы были защищены от жестких излучений Солнца некоторым слоем воды - для этого вполне достаточно 10-метрового слоя).