Выбрать главу

Усиление внимания к вопросам охраны окружающей среды стимулировало поисковые работы по созданию новых способов и оборудования для очистки промышленных вентиляционных выбросов. Сотрудниками для этих целей был разработан опытный образец реактора-озонатора. Предназначенного для уменьшения концентрации присей органических веществ. Предлагается устанавливать такие реакторы в специальных аппаратах очистки, являющихся элементами вентиляционных систем, обслуживающих пожаровзрывоопасные производства. В процессе эксплуатации в винтиляционных системах могут перемещаться горючие газо-паро-пылевоздушные смеси. Естественно, что как вентиляционные системы в целом, так и отдельные их элементы должны удовлетворять требованиям по обеспечению пожаровзрывобезопасности.

Проведено исследование пожарной опасности реактора-озонатора (РО) и разработка рекомендаций по его безопасной эксплуатации в пожаровзрывоопасных производствах.

6. СОСТОЯНИЕ ВОПРОСА

Реактор-озонатор (РО) представляет собой электротехническое устройство – два электрода, разделённые диэлектриком. На электроды подаётся электрическое напряжение порядка 10 киловольт. Считается, что синтез озона осуществляется в барьерном разряде. При прохождении через зону разряда молекулы кислорода частично диссоциируют. Образовавшийся атомарный кислород реагирует с молекулой кислорода, образуя озон. Практически РО выполнен в виде стеклянной трубки, на внутренней поверхности которой расположен высоковольтный электрод (фольга), а снаружи намотан нулевой электрод (проволока). Торцы трубки заглушены. Для установки внутри аппаратов очистки РО объединяются в кассеты (по 12 шт.), которые легко извлекаются из аппаратов для обслуживания и ремонта. По сведениям заказчика, производительность кассеты с 12-ю РО составляет +\-4,8 г озона в час. Время выхода РО на режим после подачи напряжения – 1-2 с. Стандарты на РО отсутствуют.

РО должен удовлетворять требования пожарной безопасности, однако, поскольку РО предлагается устанавливать внутри специальных технологических аппаратов очистки, требования ПУЭ 2 на них не распространяется. Следовательно, пожаро– и взрывобезопасность должна обеспечиваться на основе ГОСТов [3,4]. Известно, что требования этих ГОСТов достаточно общие, допускают варианты решений в рамках систем предотвращения взрыва, защиты от опасных факторов взрыва и соответствующих организационно-технических мероприятий. Естественно, что основой при выборе вариантов является представление о пожароопасности самого реактора-озонатора, которому в данном случае не требуется «присваивать маркировку по взрывозащите»5.

При работе РО пожарная опасность определяется наличием электрического разряда и образованием озона, взаимодействующего с окружающей средой. Воспламеняющая способность данного электрического разряда неизвестна. Естественно, что и экспериментальные методы определения характеристик пожарной опасности такого специфического электрического источника зажигания не стандартизировано. Отсутствуют необходимые сведения о нем в основных монографиях и справочниках.[6,7].

Химизм реакции озона с органическими соединениями изучен недостаточно, однако известно, что органические примеси способствуют разложению озона, при концентрациях более 20%, идущему со взрывом 7. Количественные данные о пожарной опасности озона в присутствии органических веществ отсутствуют.

7. ОБОСНОВАНИЕ ВЫБОРА НАПРАВЛЕНИЯ ИССЛЕДОВАНИЙ

Учитывая изложенное, исследования должны были бы включать изучение пожарной безопасности РО, как электрического источника зажигания, и изучение пожарной опасности озона в присутствии органических веществ. Однако, в условиях ограниченного финансирования и времени, подобное логически понятное построение работы невозможно. Для уже созданного РО ключевым моментом в исследованиях являются испытания исправного РО непосредственно во взрывоопасной среде. Только после испытаний, убедительно доказывающих возможность безопасной эксплуатации исправного РО во взрывоопасной среде, имеет смысл вести исследования, учитывающие наличие дефектов – частичное разрушение трубок – электродов, что предусмотрено техническим заданием.

Результаты испытаний позволили определить одно из двух возможных направлений дальнейшей работы:

– экспериментальная оценка пожарной опасности РО с частичным разрушением трубок-электродов, поиск и опытная проверка технических решений, обеспечивающих безопасность в этих условиях;

– разработка рекомендаций на основе требований ГОСТ 3,4, сводящихся, в основном, к недопущению функционирования РО во взрывоопасной среде.

полную версию книги