Выбрать главу

Про реактивные элементы (конденсаторы, катушки) будет рассказано далее.

Прозвонка диодов

Режим прозвонки диодов обозначается, как правило, значком диода. Подключение его аналогично подключению омметра с теми же оговорками (не измерять в схеме и др.). Измерение производится в два этапа: сначала красный провод тестера подключить к аноду, затем — к катоду. В первом случае на экране должно отобразиться некоторое число, показывающее падение напряжения на диоде в милливольтах. Во втором — бесконечность (единичка в младшем разряде).

В режиме прозвонки диодов также можно определить распиновку биполярных транзисторов и их структуру. Делается это по следующему алгоритму:

1) Выбираем любой контакт транзистора и подсоединяем к нему красный провод тестера.

2) Пробуем другим контактом подсоединиться сначала к одному, а потом к другому контакту. Если в обоих случаях мы увидели какие-то цифры (они будут отличаться на 6–7 единиц, запомните их), то транзистор имеет структуру n-p-n, а контакт, к которому присоединен красный провод, — база. Коллектор — это тот контакт, при присоединении к которому черного провода число на экране было меньше. Оставшийся контакт соответственно эмиттер.

3) Если такой комбинации найти не удалось, повторяем алгоритм сначала, только поменяв провода местами (то есть ищем комбинацию, когда к одному из контактов подсоединен черный провод, а при касании красным других контактов появляются цифры на экране). Тогда транзистор — структуры n-p-n, а контакты определяются так же, как во втором пункте.

Измерение и проверка емкостей и индуктивностей

Если ваш тестер имеет специальные режимы для проверки емкости и индуктивности (обозначаются как С и L соответственно), пользоваться им нужно так же, как омметром (с теми же оговорками). Если у тестера нет таких режимов, можно просто проверить на работоспособность эти элементы с помощью омметра. Сопротивление катушки должно быть конечным и близким к нулю (иногда оно может составлять несколько кОм). Иногда на катушках с высокой индуктивностью цифры начинаются с больших значений и быстро уменьшаются. Так и должно быть. Конденсатор должен обладать бесконечным или очень большим (несколько мегаом) сопротивлением. Для больших конденсаторов можно приближенно определить их емкость. При подключении омметра (настроив его на максимально возможный предел для измерения сопротивлений порядка мегаома) к выводам конденсатора цифры начинают увеличиваться, постепенно приближаясь к бесконечности. Для больших емкостей (тысячи микрофарад) цифры увеличиваются очень медленно.

Пугаться этого не стоит. Емкость приблизительно будет равна

С = 1/t х R,

где t — время, за которое значения на экране выросли в е раз (е = 2.7), а R — входное сопротивление тестера (примем равным 10 МОм, но желательно откалибровать ее по конденсатору известной емкости).

Естественно, конденсатор нужно подключать в соответствии с полярностью: красный провод к положительной обкладке, черный — к отрицательной. Для неэлектролитических конденсаторов это не важно. При измерении емкости таким способом нельзя прикасаться руками к обоим выводам — сопротивление человеческого тела составляет иногда даже меньше мегаома.

Разное

Сразу хочу отметить — светодиоды тестером не проверяют. Падение их напряжения, как правило, больше того, что может измерить тестер. Очень яркие светодиоды можно спалить, так как в авометре нет ограничителя тока. Я бы не советовал измерять их тестером, но если вы все-таки решитесь можно заодно определить и выводы: если светодиод горит, значит, красный провод подключен к аноду.

Полевые транзисторы можно проверить на работоспособность — затвор должен быть изолирован от остальных контактов. Естественно, антистатический браслет не помешает, так как статическое электричество человека может вывести полевой транзистор из строя. Это касается и некоторых других деталей, например, микросхем, которые содержат в себе огромное количество разнообразных компонентов, в том числе и полевые транзисторы.

Электронные лампы можно проверить на предмет обрыва накала. У рабочей лампы сопротивление холодной накальной цепи составляет от сотен ом до долей ома, причем чем мощнее лампа, тем меньше сопротивление.

Микросхемы проверить можно только в схеме. Тестер тут не поможет.

Диодные мосты проверяются аналогично обычным диодам, ошибиться в подключении там нельзя.

Определить сетевую обмотку у трансформаторов тестером тоже нельзя, так как сопротивление сетевых обмоток у мощных трансформаторов может быть меньше, чем у вторичных. Я применяю следующий метод: включаю последовательно с тестируемой обмоткой лампочку на 60 Вт (то есть лампочка включается в разрыв сетевых проводов), если лампочка не горит или горит очень слабо — это и есть нужная обмотка, если горит — переходим к следующей. Трансформаторы на 400 Гц и тем более импульсные таким способом можно проверять только при подключении к источнику тока соответствующей частоты.

Пользуемся стрелочным прибором

Наверное, люди, которые пользуются цифровыми измерительными приборами, с иронией посмотрят на эту главу книги. Однако многие рекомендации, рассказанные здесь для стрелочного прибора, могут быть применимы и для цифрового тестера, так как в него также входит омметр.

Не все начинающие радиолюбители знают, что омметром можно проверять почти все радиоэлементы: резисторы, конденсаторы, катушки индуктивности, трансформаторы, диоды, тиристоры, транзисторы, некоторые микросхемы. В авометре омметр образован внутренним источником тока (сухим элементом или батареей), стрелочным прибором и набором резисторов, которые переключаются при изменении пределов измерения. Сопротивления резисторов подобраны таким образом, чтобы при коротком замыкании клемм омметра стрелка прибора отклонилась вправо до последнего деления шкалы. Это деление соответствует нулевому значению измеряемого сопротивления. Когда же клеммы омметра разомкнуты, стрелка прибора стоит напротив левого крайнего деления шкалы, которое обозначено значком бесконечно большого сопротивления. Если к клеммам омметра подключено какое-то сопротивление, стрелка показывает промежуточное значение между нулем и бесконечностью и отсчет производится по оцифровке шкалы. В связи с тем, что шкалы омметров выполнены в логарифмическом масштабе, края шкалы получаются сжатыми, поэтому наибольшая точность измерения соответствует положению стрелки в средней, растянутой части шкалы. Таким образом, если стрелка прибора оказывается у края шкалы, в сжатой ее части, для повышения точности отсчета следует переключить омметр на другой предел измерения.

Омметр производит измерение сопротивления, подключенного к его клеммам, путем измерения постоянного тока, протекающего в цепи. Поэтому к сопротивлению прикладывается постоянное напряжение от встроенного в омметр источника.

В связи с тем, что некоторые радиоэлементы обладают разными сопротивлениями в зависимости от полярности приложенного напряжения, для грамотного использования омметра необходимо знать, какая из клемм омметра соединена с плюсом источника тока, а какая — с минусом. В паспорте авометра эти сведения обычно не указаны, и их нужно определить самостоятельно. Это можно сделать либо по схеме авометра, либо экспериментально с помощью какого-либо дополнительного вольтметра или исправного диода любого типа.

Щупы омметра подключают к вольтметру так, чтобы стрелка вольтметра отклонялась вправо от нуля. Тогда тот щуп, который подключен к плюсу вольтметра, будет также плюсовым, а второй — минусовым. При использовании в этих целях диода его сопротивление измеряют два раза: сначала произвольно подключая к диоду щупы, а второй раз — наоборот. За основу берется то измерение, при котором показания омметра получаются меньшими. При этом щуп, подключенный к аноду диода, будет плюсовым, а щуп, подключенный к катоду, — минусовым.