Выбрать главу

Фиг. 4. Отрицательный электрод отталкивает электроны, — в цепи: нить лампы — пластинка — батарея — тока нет

Увеличение положительного заряда пластинки достигается включении в её цепь батареи с большим напряжением, причём плюс батареи присоединяется к пластинке, а минус — к нити (к положительному полюсу накальной батареи, фиг. 5). Оставляя температуру нити неизменной, т. е. поддерживая неизменным напряжение накала, можно определить характер изменения тока в цепи пластинки в зависимости от изменения напряжения «пластиночной» батареи. Эту зависимость принято выражать графически построением линии, плавно соединяющей точки, соответствующие показаниям прибора. По горизонтальной оси слева направо обычно откладываются возрастающие значения положительного напряжения на пластинке, а по вертикальной оси снизу вверх — возрастающие значения тока в цепи пластинки. Полученный график (характеристика) говорит о том, что зависимость тока от напряжения получается пропорциональной только в ограниченных пределах. По мере увеличения напряжения на пластинке ток в её цепи возрастает сначала медленно, потом быстрее и затем равномерно (линейный участок графика). Наконец, наступает такой момент, когда возрастание тока прекращается. Это — насыщение: ток не может стать больше: все электроны, эмиттируемые нитью, полностью использованы. «Электронное облако» исчезло.

Фиг. 5. Как изменяется ток в цепи пластинки в зависимости от напряжения в этой цепи

Цепь пластики лампы обладает свойством одностороннего пропускания электрического тока. Эта односторонность определяется тем, что электроны («переносчики тока») могут проходить в такой лампе только в одном направлении: от раскалённой нити к пластинке. Джону Флемингу, когда он в 1904 г. занимался опытами по приёму сигналов беспроволочного телеграфа, необходим был детектор — прибор с односторонним пропусканием тока. Флеминг применил в качестве детектора электронную лампу.

Так эффект Эдисона был впервые практически применён в радиотехнике. Техника обогатилась новым достижением — «электрическим клапаном». Интересно сопоставить две схемы: схему приёмного устройства Флеминга, опубликованную в 1905 г., и современную схему простейшего приёмника с кристаллическим детектором. Эти схемы по существу мало чем отличаются одна от другой. Роль детектора в схеме Флеминга выполнял «электрический клапан» (вентиль). Именно этот «клапан» и явился первой и простейшей радиолампой (фиг. 6). Так как «клапан» пропускает ток лишь при положительном напряжении на пластинке, а электроды, соединяемые с плюсом источников тока, называются анодами, то именно такое название и дано пластинке, какую бы форму (цилиндрическую, призматическую, плоскую) ей ни придали. Нить, присоединяемая к минусу анодной батареи («пластиночной батареи», как мы её именовали ранее), называется катодом.

Фиг. 6. Принцип действия детектора

«Клапаны» Флеминга широко применяются и поныне, но носят другие названия. В каждом современном радиоприёмнике с питанием от сети переменного тока имеется устройство, преобразовывающее переменный ток в необходимый для приёмника постоянный ток. Это преобразование осуществляется посредством «клапанов», называемых кенотронами. Устройство кенотрона в принципе совершенно такое же, как и прибора, в котором Эдисон наблюдал впервые явление термоэлектронной эмиссии: колба, из которой выкачан воздух, анод и накаливаемый электрическим током катод. Кенотрон, пропуская ток лишь одного направления, преобразовывает переменный ток (т. е. ток, попеременно меняющий направление своего прохождения) в ток постоянный, проходящий все время в одном направлении. Процесс преобразования кенотронами переменного тока в постоянный получил название выпрямления, что следует, видимо, объяснить формальным признаком: график переменного тока обычно имеет форму волны (синусоиды), тогда как график постоянного тока — прямая линия. Получается как бы «выпрямление» волнистого графика в прямолинейный (фиг. 7). Полное устройство, служащее для выпрямления, называется выпрямителем.