Выбрать главу

Фиг. 9. Отрицательный заряд сетки отталкивает электроны к катоду и мешает им проходить к аноду

Положительно заряженная сетка не отталкивает, а притягивает к себе электроны, тем самым ускоряя их пробег (фиг. 10). Если постепенно увеличивать положительное напряжение на сетке, начиная от нуля, то можно наблюдать следующее. Сначала сетка будет как бы помогать аноду: вылетая из раскалённого катода, электроны испытают более сильное ускоряющее воздействие. Основная масса электронов, направляясь к аноду, по инерции пролетит сквозь отверстия в сетке и попадёт в «засеточном пространстве» в поле усиленного напряжения анода. Эти электроны попадут на анод. Но некоторая часть электронов попадает непосредственно на сетку и образует сеточный ток. Затем при возрастании положительного заряда сетки сеточный ток будет увеличиваться, т. е. все большее количество электронов от общего электронного потока будет задерживаться сеткой. Но и анодный ток будет увеличиваться, так как скорости электронов возрастают. Наконец, вся эмиссия будет полностью использована, пространственный заряд вокруг катода уничтожится, и анодный ток перестанет возрастать. Наступит насыщение, эмиттированные электроны разделятся между анодом и сеткой, причём бо́льшая их часть придётся на долю анода. Если ещё больше увеличивать положительное напряжение на сетке, то это приведёт к возрастанию сеточного тока, но исключительно за счёт уменьшения тока анода: сетка будет перехватывать все большее количество электронов из направляющегося к аноду потока их. При очень больших положительных напряжениях на сетке (больших, чем напряжение на аноде) сеточный ток может даже превысить анодный ток, сетка может «перехватить» у анода все электроны. Анодный ток уменьшится до нуля, а сеточный возрастёт до максимума, равного току насыщения лампы. Все эмиттируемые нитью электроны попадают на сетку.

Фиг. 10. Положительный заряд сетки притягивает электроны и помогает им проходить к аноду

Характерные свойства трехэлектродных ламп наглядно отображаются графиком зависимости анодного тока от напряжения на сетке при неизменном положительном напряжении на аноде. Этот график называется характеристикой лампы (фиг. 11). При некотором отрицательном напряжении на сетке анодный ток совершенно прекращается; этот момент отмечен на графике слиянием нижнего конца характеристики с горизонтальной осью, вдоль которой отложены величины напряжений на сетке. В этот момент лампа «заперта»: все электроны возвращаются сеткой обратно на катод. Сетка преодолевает действие анода. Анодный ток равен нулю. При уменьшении отрицательного заряда сетки (движение по горизонтальной оси вправо) лампа «отпирается»: появляется анодный ток, сначала слабый, а потом все более быстро возрастающий. График устремляется кверху, отдаляясь от горизонтальной оси. Момент, когда заряд сетки доведён до нуля, на графике отмечен пересечением характеристики с вертикальной осью, вдоль которой от нуля кверху отложены величины анодного тока. Начинаем постепенно увеличивать положительный заряд на сетке, вследствие чего анодный ток продолжает возрастать и, наконец, достигает максимального значения (ток насыщения), при котором характеристика загибается и далее становится почти горизонтальной. Вся эмиссия электронов полностью использована. Дальнейшее увеличение положительного заряда сетки приведёт лишь к перераспределению электронного потока: все большее количество электронов будет задерживаться сеткой и, соответственно, меньшее их количество придётся на долю анода. Обычно радиолампы не работают при столь больших положительных напряжениях на сетке, и поэтому пунктирный участок характеристики анодного тока можно не рассматривать. Обратите внимание на характеристику, начинающуюся в точке пересечения осей. Это — характеристика сеточного тока. Отрицательно заряженная сетка не притягивает к себе электроны, и ток сетки равен нулю. При возрастании положительного напряжения на сетке ток в её цепи, как показывает график, увеличивается.