Выбрать главу

С поразительной находчивостью он поймал птицу удачи, почуяв верное дело. Только бы оно не уплыло из рук. И понеслось! Брагадин и двое его неразлучных друзей, Марко Дандоло и Марко Барбаро, – «три оригинала, внушающие уважение своей порядочностью, рождением, весом и возрастом», трио старых холостяков, остепенившихся после излишеств юности, добрых христиан, но ставших непримиримыми врагами женщин, попользовавшись ими всласть и отказавшись от них, не сомневаются: «Имея меня в своем распоряжении, они верили, что обладают философским камнем, универсальной медициной, общением с духами стихий и небесным разумом, секретами всех кабинетов Европы. Они также верили в магию, наделяя ее благовидным названием оккультной физики» (I, 380). Казанова им объяснил, что если он, не достигнув пятидесяти лет, откроет им правило этих расчетов, которому обучился у одного отшельника, живущего на горе в Карпенье, пока служил в испанской армии, то умрет скоропостижно в три дня после того, как выдаст свою тайну. Джакомо стал для них незаменимым, необходимым посредником в общении с духами. Как не посмеяться над этими простофилями? «Таким образом я стал Иерофантом трех этих людей, очень честных и любезных в меру возможного, но только не мудрых, поскольку все трое предавались тому, что называют химерами науки» (I, 380).

«Каббалистика, которой пользовался Казанова, чтобы дурить голову своим простофилям, относится к области гадания на числах, в отличие от гадания по именам или жребию»[32]. На самом деле это жуткое шарлатанство, которое предполагает завидную наглость и апломб, с одной стороны, и невероятную доверчивость – с другой. Жадный к познаниям во всех областях, Казанова обладал относительно разнообразными техническими познаниями в области оккультизма, чтобы изрекать свои пророчества, не будучи немедленно обвинен в обмане. Он довольно-таки много читал: «Пикатрикс», «Ключ Соломона», Агриппу, Артефия, Сенвигодия, но вкривь и вкось. Он также много занимался полиграфией Тритема, аббата Спангейма, который в своей книге «Стенография» свел воедино все методы секретных кодов. Возможно, знал он и книгу «О рассудочной каббалистике. Высшее искусство», где описана «нумерическая каббалистика Сивилл, отвечающая на все вопросы, заданные на каком бы то ни было языке или наречии в стихе гекзаметра, и отвечающая весьма кстати». К счастью для него, он имел дело с новичками, неспособными вывести на чистую воду наглого обманщика!

Тем не менее эта псевдонаука все же требовала от Казановы серьезных навыков, чтобы быстро преобразовывать буквы в числа. Вопрос, заданный «гению», который должен был его вдохновить, переводился в цифры, соответствующие числу букв в каждом слове. Затем выводился ответ, следуя такому алфавитному соотношению: А = 1, Б = 2, В = 3 и т. д. Буквы Е и Ё, И и Й обозначались одним числом. Он знал это соотношение наизусть и почти сразу же переводил предлагаемые ему вопросы. Допустим, такой вопрос: «По какой причине господин граф запретил, чтобы ему говорили о его скором отъезде в Венецию?» В каждом слове этой фразы есть определенное число букв. Расположим эти числа в виде пирамиды:

Представим себе, что Казанова пожелал бы ответить: «По очень секретной дипломатической причине»; и немедленно составил бы в голове код ответа. По принципу, указанному выше, это дало бы следующее: П = 15, О = 14 и т. д. Значит, нужно как можно быстрее совершить нудные преобразования, которые не так-то просто выполнить с большой скоростью. Действительно, необходимо обладать замечательной быстротой ума, неоспоримой способностью к мысленным расчетам, чтобы на ходу жонглировать буквами и цифрами, хорошей памятью, чтобы держать в ней пирамиду и все допустимые ею сочетания чисел. Это качества, необходимые для шахматиста или картежника, и в этом отношении нашему венецианцу сам черт не брат. Он здорово натренировался. Остается найти шифр ответа в пирамиде. Здесь царит полный произвол, ибо Казанова сам направлял своего собеседника. «Возьмите, – говорил он ему, – первую цифру во второй строке и перемножьте со второй цифрой в четвертой строке». Получалось 15 = П. «Теперь отнимите от нее третью цифру в пятой строке». Итог: 14 = О. И так далее… Детский прием: поглощенный каббалистическими вычислениями, сложением, умножением, вычитанием, оператор не сознает, что его подводят к заранее замышленному ответу. Поскольку всегда существовал риск того, что числовой обман будет раскрыт неким проницательным скептиком, Казанова старательно усложнял и запутывал свои расчеты. Он использовал магический ключ, состоявший из инициалов О.С.А.Д. Изучал двойные колонки, добавлял нули. Порой даже «гений» подсказывал ему первую директиву, чтобы получить согласные, а гласные выявлялись во время второй операции. На самом деле, точные действия Казанове не важны. Если верить Бернхарту Марру, чтобы получить ответ, он продвигался зигзагом от цифр, расположенных на вершине пирамиды, к тем, что были в ее основании. Важно то, что этот монументальный обман чудесно срабатывал и восторженные простофили попадались в ловушку.

вернуться

32

Ned Rival, op. cit., p. 70.