Выбрать главу

Рис. 1. Фотоумножитель может обнаружить единичный фотон. Когда фотон ударяется о пластинку А, он выбивает оттуда электрон, который притягивается к положительно заряженной пластинке В и высвобождает еще больше электронов. Этот процесс продолжается до тех пор, пока миллиарды электронов не попадут на последнюю пластинку L и не образуют электрический ток, который усиливается обычным усилителем. Если к усилителю подключен динамик, то каждый раз, когда фотон данного цвета попадает на пластинку А, раздаются щелчки одинаковой громкости.

Если вы расставите вокруг много фотоумножителей и будете светить очень тусклым светом в разных направлениях, свет попадет в один из фотоумножителей и произведет щелчок полной громкости. Все или ничего: если один фотоумножитель срабатывает в данный момент, никакой другой уже не срабатывает (кроме того редкого случая, когда два фотона одновременно вылетают из источника света). Свет не распадается на «половинки частиц», которые летят в разные места.

Хочу особенно подчеркнуть, что свет существует именно в виде частиц – это очень важно знать. Это особенно важно знать тем из вас, кто ходил в школу, где, возможно, что-то говорили о волновой природе света. Я говорю вам, как он на самом деле ведет себя – как частицы.

Вы можете сказать, что это только фотоумножитель показывает, что свет состоит из частиц. Но нет, любой прибор, достаточно чувствительный, чтобы реагировать на слабый свет, всегда в конце концов обнаруживал то же самое: свет состоит из частиц.

Я буду исходить из того, что вы представляете себе свойства света в повседневных обстоятельствах – например, что свет распространяется прямолинейно, что преломляется, попадая в воду, что, когда свет отражается от зеркальной поверхности, угол падения равен углу отражения, что свет можно разложить на цвета, что очень красивые цвета видны на луже, когда в нее попадет немного масла, что линза фокусирует свет и т. д. Я буду использовать эти знакомые вам явления, чтобы проиллюстрировать действительно странное поведение света и постараюсь объяснить эти явления при помощи квантовой электродинамики. Я рассказал вам о фотоумножителе, чтобы проиллюстрировать основополагающий факт, который мог быть вам неизвестен, – что свет состоит из частиц, но теперь, надеюсь, вы знаете и это!

Полагаю, всем вам известно, что свет частично отражается от некоторых поверхностей, например от воды. Сколько романтических полотен посвящено отражению в озере лунного света (и сколько раз вы попадали в беду из-за лунного света, отражавшегося в озере!). Глядя на воду, вы можете увидеть (особенно днем) то, что находится в глубине, но видите также и отражение от поверхности. Другой пример – стекло. Если днем в комнате горит лампа, и вы смотрите в окно, то вам видно и то, что происходит снаружи, и тусклое отражение лампы в комнате. Таким образом, свет частично отражается от поверхности стекла.

Прежде чем продолжить, хочу обратить ваше внимание на некое упрощение, которое я сделаю вначале и которое будет исправлено позже: говоря о частичном отражении света от стекла, я буду предполагать, что свет отражается только от поверхности стекла. В действительности кусок стекла – это страшно сложное чудовище, в котором кишит огромное количество электронов. Когда фотон попадает в стекло, он взаимодействует с электронами во всем стекле, а не только с теми, что на поверхности. Фотон и электроны исполняют некий танец, конечный результат которого точно такой же, как если бы фотон ударялся только о поверхность. Так что позвольте мне пока сделать такое упрощение. А позже я покажу вам, что на самом деле происходит в стекле, и вы поймете, почему окончательный результат тот же.

Теперь я хотел бы описать вам один эксперимент и сообщить его удивительные результаты. В этом эксперименте несколько фотонов одного цвета, допустим, красного, попадают из источника на кусок стекла (см. рис. 2). Фотоумножитель установлен в точке А над стеклом и ловит все фотоны, отраженные передней поверхностью. Чтобы определить, сколько фотонов проходит через переднюю поверхность, другой фотоумножитель установлен в точке В внутри стекла. Не обращайте внимания на очевидные трудности, связанные с установкой фотоумножителя внутри стекла. Каковы же результаты этого эксперимента?

Рис. 2. Эксперимент для измерения частичного отражения света от одной поверхности стекла. Из каждых 100 фотонов, покидающих источник света, 4 отражаются от передней поверхности и попадают в фотоумножитель А, в то время как остальные 96 проходят сквозь переднюю поверхность и оказываются в фотоумножителе В.