Выбрать главу

7.6. ВДОХ И ВЫДОХ

Мы более или менее точно знаем, что вдыхает человек. А что он выдыхает?

В составе выдыхаемого человеком воздуха кроме диоксида углерода CO2, азота N2 и неизрасходованного кислорода O2 присутствуют в небольшом количестве вещества, образовавшиеся в результате сложных биохимических реакций, протекающих в нашем организме: углеводороды, спирты, аммиак NH3, муравьиная HCOOH и уксусная CH3COOH кислоты, формальдегид HCHO и даже ацетон (CH3)2CO. На высоте 10 км в сильно разреженном воздухе в выдыхаемом газе резко возрастают концентрации аммиака, аминов, фенола C6H5OH, ацетона и даже появляется сероводород H2S.

7.7. КОГДА КИСЛОРОД ВРЕДЕН?

На живые организмы токсическое воздействие оказывает не молекулярный кислород O2, а его производные: озон O3, возбужденные молекулы кислорода O*2, радикал гидроксил ОН (см. 3.53), атомарный кислород О, радикал гидропероксид HO2, ион-радикал надпероксид O2-.

Все эти частицы образуются в результате тех или иных фотохимических реакций. Например, диоксид азота NO2, входящий в состав выхлопных газов автотранспорта и газовых выбросов заводов, разлагается под действием света (hν) на монооксид азота NO и атомарный кислород О, а последний с кислородом образует озон:

NO2 == NO + О; О + O2 = O3.

Диоксид азота, взаимодействуя с влагой воздуха, превращается в смесь двух кислот: азотной HNO3 и азотистой HNO2:

2NO2 + H2O = HNO3 + HNO2.

Азотистая кислота под действием света выделяет гидроксил:

HNO2 == NO + O*.

Активные формы кислорода действуют на живые организмы и их биологические формы разрушительно. Кстати, теперь объясняют возникновение лучевой болезни образованием активных форм кислорода при разложении воды организма под действием ионизирующих излучений:

H2O == O*H + H+ + e-; H2O + О*Н = H2O2 + H+ + e-,
H2O2 == HO*2 + H+ + е-.

Очевидно, что встреча живого организма с активными формами кислорода, входящими, между прочим, в состав смога (см. 7.3), не сулит ему ничего хорошего.

7.8. ХУДОЙ ЗОНТИК

«Вся твоя маскировка — 30 метров озона! Твои миги сосчитаны Наведенным патроном. 30 метров озона — Вся броня и защита…»
(А. Вознесенский, поэма «Оза», гл. III)

Надежно ли защищает озоновая оболочка Земли от смертоносного ультрафиолетового излучения все живое?

Толщина слоя озона O3 в стратосфере в 30 м — гипербола. Его распределение по высоте неравномерно. Наибольшая концентрация озона наблюдается на высоте 15–25 км. На этой высоте солнечная радиация () «дробит» молекулы кислорода O2 на атомы, которые и образуют озон:

O2 == 2O; O2 + O = O3.

Если собрать весь озон, находящийся в атмосфере, и опустить его до поверхности Земли, то при давлении в 0,1 МПа и температуре 25°C получится слой озона всего в 3 мм.

Озоновая оболочка Земли химически неустойчива и может местами утончаться от воздействия ряда веществ. Первая гипотеза появления озоновых «дыр» предполагала возможность разрушения озона под действием фреонов — фторуглеродных соединений, например дифтордихлорметана CCl2F2, которые широко применяются в качестве теплоносителя в холодильных агрегатах и газа-разбрызгивателя в аэрозольных баллончиках. Фреоны, а также другие многотоннажные вещества, содержащие хлор (CCl4, C2H4Cl2 и др.), подвергаются фотодиссоциации под действием солнечного излучения (hν):

CCl2F2 == CClF2 + Cl*.

Затем атомы хлора, взаимодействуют с озоном, а образовавшаяся молекула-радикал ClO еще и препятствует появлению озона:

Сl*O + O = Сl* + O2.

Вторая гипотеза предполагает участие в разрушении озона клатратов — твердых соединений газов с водой (см. 5.11, 5.12). В стратосфере при минус 60–90°C озон может превращаться в клатрат, например O3∙5,75Н2O, который механически выносит озон из стратосферы. В слоях более близких к поверхности Земли, где температура выше, такой клатрат распадается на кислород и воду.