Выбрать главу

Чтобы извлечь максимум пользы из этих отношений, необходимо создать четкую и конкретную персону ИИ, определив, кто такой ИИ и какие проблемы он должен решать. Помните, что LLM работают, предсказывая следующее слово или часть слова, которое последует за вашей подсказкой. Затем они продолжают добавлять язык, снова предсказывая, какое слово будет следующим. Поэтому стандартный вывод многих таких моделей может звучать очень шаблонно, так как они склонны следовать схожим шаблонам, характерным для письменных документов, на которых обучался ИИ. Разрушив шаблон, можно получить гораздо более полезные и интересные результаты. Самый простой способ сделать это - предоставить контекст и ограничения. Можно сказать системе, кто она, потому что это дает ей перспективу. Если попросить ее выступить в роли преподавателя для студентов MBA, результат будет отличаться от того, если попросить ее выступить в роли циркового клоуна. Это не волшебство - вы не можете сказать "Выступить в роли Билла Гейтса" и получить лучший бизнес-консультант, - но это может помочь сделать тон и направление соответствующими вашей цели.

Позвольте мне привести несколько примеров того, как определение персоны ИИ может улучшить ваши результаты. Предположим, вы директор по маркетингу и хотите использовать LLM для создания запоминающихся слоганов для вашего нового продукта - смарт-часов, которые отслеживают состояние вашего здоровья и физической формы. Если вы просто попросите LLM сгенерировать несколько слоганов для моего продукта, без какого-либо контекста или ограничений, вы можете получить что-то вроде этого:

Смарт-часы, которые делают вас умнее

Ваш партнер по фитнесу и здоровью

Устройство, идеально подходящее для вашего образа жизни

Оставайтесь на связи и будьте здоровы с нашими смарт-часами

Смарт-часы, которые делают все

Они не отличаются оригинальностью или запоминаемостью. Они звучат как общие маркетинговые фразы, которые можно применить к любым смарт-часам или носимым устройствам. Они не отражают того, что делает ваш продукт уникальным или привлекательным. Теперь предположим, что вы задаете LLM определенный контекст и ограничения, говоря ему, кто он такой и что должен делать. Например, вы можете сказать: "Выступите в роли остроумного комика и придумайте несколько слоганов для моего продукта, которые заставят людей смеяться". Тогда вы можете получить что-то вроде: Универсальное устройство для ленивых людей, которые хотят выглядеть подтянутыми. Или: Зачем нанимать персонального тренера, если ваше запястье может пилить вас бесплатно? (Хотя, как вы, наверное, понимаете, большинство ИИ предпочитают оставаться на территории "Папиных шуток").

Конечно, не обязательно, чтобы ИИ выступал в роли комика, если это не ваш стиль или цель. Вы также можете попросить его выступить в роли эксперта, друга, критика, рассказчика или в любой другой роли, которая соответствует вашим целям. Главное - дать LLM некоторые указания и направления, как генерировать результаты, соответствующие вашим ожиданиям и потребностям, чтобы привести его в нужное "состояние" и дать вам интересные и уникальные ответы. Исследования показали, что , предлагая ИИ соответствовать различным персоналиям, дает разные, а зачастую и лучшие ответы. Однако не всегда ясно, какие персоны работают лучше всего, и LLM могут даже незаметно адаптировать свою персону к вашей технике задавания вопросов, давая менее точные ответы людям, которые кажутся менее опытными, поэтому эксперименты являются ключевым моментом.

Как только вы дадите ему личность, вы сможете работать с ним так же, как с другим человеком или стажером. Я убедился в ценности такого подхода на практике, когда поручил своим студентам "схитрить", используя искусственный интеллект для создания эссе из пяти параграфов на актуальную тему. Поначалу студенты давали простые и расплывчатые подсказки, в результате чего получались посредственные эссе. Но по мере того как они пробовали разные стратегии, качество работы ИИ значительно улучшилось. Одна из очень эффективных стратегий, которая была выработана в ходе занятий, заключалась в том, чтобы рассматривать ИИ как соредактора, участвуя в процессе обсуждения в режиме "спина к спине". Студенты создавали впечатляющие эссе, которые значительно превосходили их первоначальные попытки, постоянно корректируя и перенаправляя ИИ.