Выбрать главу

2.4.1.

ОСОБЕННОСТИ АДСОРБЦИИ ГАЗА ИЛИ ПАРА НА ТВЕРДОМ АДСОРБЕНТЕ

1. Поверхность твердого тела, в отличие от поверхности жидкости, имеет сложный, неоднородный характер. Даже полированное зеркало имеет на поверхности выступы размерами до см.

2. Адсорбция происходит не на всей поверхности, а лишь на активных центрах.

3. Адсорбция кинетически обратима - наряду с адсорбцией газа происходит его десорбция. Адсорбционное равновесие устанавливается очень быстро. Молекула газа считается адсорбированной, если она находится в поверхностном слое в течение определенного времени, называемого временем адсорбции. Существуют методы, позволяющие экспериментально определить . Так, для паров кадмия, адсорбированных на стекле, в зависимости от температуры; для паров аргона на стекле .

В зависимости от природы адсорбционных сил адсорбция газов и паров может быть физической и химической (см. параграф 2.2.5).

С повышением температуры физическая адсорбция уменьшается, так как возрастает интенсивность теплового движения молекул газа, стремящихся равномерно распределиться по всему объему системы. Это приводит к уменьшению времени адсорбции, а следовательно, к уменьшению количества адсорбированного вещества.

При хемосорбции молекулы адсорбата образуют с адсорбентом химические соединения. Хемосорбция может быть поверхностной (химическая реакция протекает только в пределах поверхностного слоя). Например, при адсорбции кислорода на поверхности алюминия происходит реакция:

в результате которой алюминий покрывается прочной оксидной пленкой.

Хемосорбция может быть и объемной, когда слой вещества, образовавшегося в результате реакции на поверхности, не препятствует дальнейшему проникновению газа в объем твердого адсорбента, например:

Хемосорбция, в отличие от физической адсорбции, является необратимой.

Обычно имеют место промежуточные случаи, когда основная масса адсорбированного вещества связана с адсорбентом сравнительно слабо, а следы его связаны прочно и могут быть удалены лишь путем длительного прогревания и откачивания. Водород на никеле при низких температурах адсорбируется физически ввиду малой скорости химической реакции, но при повышении температуры начинает протекать адсорбция с заметной энергией активации по типу химических реакций.

4. Поверхность адсорбента часто бывает пористой. Наличие пор приводит к тому, что адсорбция сопровождается капиллярной конденсацией.

5. Наряду с адсорбцией, представляющей собой поверхностный процесс, может происходить поглощение газа или пара всем объемом твердого тела (например, поглощение водорода металлическим палладием или платиной). Это явление называется адсорбцией.

Адсорбцию газа на твердом адсорбенте количественно характеризуют величиной а:

где - количество i-гo газа, адсорбированного на твердом адсорбенте; m - масса адсорбента.

Иногда вместо количества газа указывают его массу ():

Часто количество газа выражают через его объем, приведенный к нормальным условиям:

Каким образом охарактеризована адсорбция, легко установить по размерности приведенной величины .

Величина адсорбции газа на твердом адсорбенте зависит от следующих факторов:

• температуры;

• концентрации (равновесного давления) пара или газа в поверхностном слое;

• природы твердого тела;

• природы газа.

2.4.2.

ЗАВИСИМОСТЬ АДСОРБЦИИ ГАЗА ОТ ЕГО КОНЦЕНТРАЦИИ (ДАВЛЕНИЯ) ПРИ ПОСТОЯННОЙ ТЕМПЕРАТУРЕ

Адсорбцию газа можно характеризовать:

1. Зависимостью количества адсорбированного вещества а от температуры при постоянном равновесном давлении р. Кривые а = f(p) называются изобарами адсорбции. Выше отмечалось, что при физической адсорбции с повышением температуры адсорбция уменьшается: da / dT < 0.

2. Зависимостью количества адсорбированного вещества от равновесного давления при постоянной температуре. Графики а = f(p) при Т = const называются изотермами адсорбции. Изотермы имеют решающее значение при изучении адсорбции, поэтому мы будем рассматривать именно эти кривые.

На рис. 4.1 представлены типичные изотермы физической адсорбции при двух температурах.

Изотермы имеют три участка. Начальный почти прямолинейный участок I свидетельствует о том, что при малых давлениях адсорбция практически пропорциональна давлению. Это отвечает ситуации, когда поверхность адсорбента практически свободна. Горизонтальный участок III показывает, что при больших давлениях адсорбция практически не зависит от давления. Это связано с тем, что поверхность уже насыщена адсорбтивом. Промежуточный участок кривой II соответствует частичному заполнению поверхности.