Выбрать главу
- интенсивность падающего света, I - интенсивность света, прошедшего через пену.

5.3.5.

УСТОЙЧИВОСТЬ ПЕНЫ

Пены, как и другие дисперсные системы, являются термодинамически неустойчивыми системами. Их образование сопровождается увеличением свободной энергии. Избыточная энергия вызывает самопроизвольные процессы, которые ведут к уменьшению дисперсности и разрушению ее как дисперсной системы. Минимальное значение свободной энергии достигается при полном разделении пены на две сплошные фазы: жидкость и газ. Пленки пены лопаются, потому что площадь (и, следовательно, поверхностная энергия) полученных капель меньше площади первоначальной системы. У пузырька радиусом 1 см и толщиной стенок см площадь поверхности равна 25 , а капля жидкости, которая образуется при разрушении этого пузырька, имеет площадь всего ~0,1 . Разность энергии так велика, что когда пленка лопается, образовавшаяся капелька жидкости летит со скоростью 1000 см/с.

Таким образом, пены обладают только относительной устойчивостью, которая подразделяется на два вида:

• кинетическая (седиментационная) устойчивость - способность системы сохранять неизменным во времени распределение частиц дисперсной фазы в объеме системы, т.е. способность системы противостоять силе тяжести;

• агрегативная устойчивость - способность сохранять неизменными размеры частиц дисперсной фазы (дисперсность) и их индивидуальность.

АГРЕГАТИВНАЯ УСТОЙЧИВОСТЬ ПЕНЫ

Реальная пена, как правило, является полидисперсной, т.е. пузырьки газа в ней имеют разные размеры. Чем меньше пузырек газа, тем больше в нем давление. Следовательно, во времени самопроизвольно идет процесс диффузии газа из маленьких пузырьков в большие, при этом маленькие пузырьки становятся еще меньше, а большие - увеличиваются, что приводит к изменению стабильности пены - говорят, "пена стареет". Чем больше различия в размерах пузырьков (больше степень полидисперсности), тем сильнее проявляется диффузия газа. Кроме степени полидисперсности на скорость диффузионного разрушения пены влияют:

• растворимость газа в жидкой пленке;

• коэффициент диффузии газа в жидкой пленке - для большинства газов, которые используются для получения пен, он равен ;

• толщина жидких пленок;

• поверхностное натяжение раствора пенообразователя.

Экспериментальные данные показывают, что диффузия газа в пене - процесс относительно медленный, и можно утверждать, что пены являются относительно агрегативно устойчивыми.

СЕДИМЕНТАЦИОННАЯ УСТОЙЧИВОСТЬ

Нарушение седиментационной устойчивости пен связано с процессом самопроизвольного стекания жидкости в пленке пены, что приводит к ее утончению и, в конце концов, к разрыву. Этот процесс вызывается действием сил гравитации и капиллярных сил всасывания. Жидкость стекает по каналам Плато. Если сосуд наполнить пеной и оставить на некоторое время, то постепенно на дне собирается слой жидкости, который будет расти до тех пор, пока в пленках пены не останется совсем мало жидкости или пока пленки не лопнут. Истечение жидкости из пены может происходить и вследствие капиллярного всасывания (всасывание через границы Плато). Стенка между соприкасающимися пузырьками одинакового размера в пене плоская, это своего рода плоский капилляр, поэтому жидкость, заполняющая стенку, находится под таким же давлением, как и газ в двух пузырьках. Однако поверхность "жидкость-воздух" вблизи места соединения трех пузырьков (граница Плато) вогнута по отношению к воздушной фазе. Следовательно, жидкость на границе Плато находится под отрицательным капиллярным давлением, и перепад давления гонит жидкость из плоской стенки между пузырьками к границе Плато. Процесс истечения жидкости из пленки очень сложен и не может быть описан простым математическим уравнением. Утончение пленок возможно не только в результате вытекания жидкости, но и при ее испарении. Большая поверхность пены этому способствует, а замкнутость газовых пузырьков тормозит этот процесс. Разрыв пленки, по Дерягину, включает три стадии:

• постепенное утончение всей пленки;

• скачкообразное появление отдельных участков меньшей толщины, чем толщина всей пленки;