Выбрать главу

Снижают ли взаимодействия между генами эффективность отбора? Да, и особенно для видов с половым размножением. Я приведу пример именно для таких организмов, каждый из которых имеет по два одинаковых или разных аллеля каждого гена и передаёт потомкам лишь один из них.

Представим, что некий счастливый организм приобретает сочетание двух редких (возможно, недавно возникших) аллелей, каждый из которых поодиночке неблагоприятен: А1 и В1. В популяции распространены аллели А0 и В0. Сочетания А1 и В1 благоприятны, а вот А1 и В0, как и А0 и В1 - вредны (и то и другое - в сравнении с нормой, А0 и В0).

Давайте я не буду объяснять логику решения генетических задач, а просто распишу соотношения численностей групп потомков от скрещивания счастливого обладателя удачного сочетания двух мутаций с наиболее вероятным партнёром. Рассмотрим случаи, когда оба этих аллеля доминантны (влияют на фенотип даже у особей, у которых присутствуют в одной копии) и когда они рецессивны (проявляются в фенотипе только у организма, имеющего две их копии).

Если аллели А1 и В1 доминантны, только четверть потомков будет обладать улучшенным фенотипом (показаны полужирным шрифтом), а две четверти - ухудшенным (выделены подчёркиванием):

А1А0В1В0 × А0А0В0В0 → А1А0В1В0 : А1А0В0В0 : А0А0В1В0 : А0А0В0В0.

Если рассматриваемые аллели рецессивны, у всех потомков будет нормальный фенотип:

А1А1В1В1 × А0А0В0В0 → А1А0В1В0.

Посмотрим, что будет, если такие потомки скрестятся друг с другом:

А1А0В1В0 × А1А0В1В0 → А1А1В1В1 : 2А0А1В1В1 : 2А1А1В1В0 : 4А1А0В1В0 : 2А1А0В0В0 : 2А0А0В1В0 : А0А0В1В1 : А1А1В0В0 : А0А0В0В0.

Благоприятный признак проявится лишь у одного потомка из шестнадцати, а шесть из шестнадцати потомков будут иметь ухудшенный фенотип! В этих (и иных, не рассмотренных нами) случаях подобного взаимодействия аллелей они чаще будут встречаться в популяции порознь, когда отбор будет работать против них, чем вместе, в одобряемом отбором состоянии. Ситуации, когда отбор будет поддерживать взаимодополняющую пару аллелей, окажутся редки по сравнению со случаями, когда он будет уничтожать эти аллели поодиночке.

Взаимодействие генов снижает эффективность отбора! И чем сложнее организмы, чем сложнее определяются их признаки, тем в меньшей мере направленный отбор фенотипов будет приводить к направленному отбору аллелей.

У по-настоящему сложных организмов между генотипом и фенотипом вклинивается ещё несколько механизмов регуляции, затрудняющих сортировку аллелей отбором. Один из них на языке СТЭ называется расширением нормы реакции. Организмы с одинаковым генотипом могут отличаться из-за развития в разных условиях (или просто в силу случайности). Представьте себе трёх человеческих близнецов-тройняшек с одинаковыми генотипами. Одного вырастило племя первобытных охотников, другой попал в интернат для спортсменов-силовиков, третий - в спецматшколу. Несмотря на идентичную наследственность, они вырастут очень разными - и физически, и по поведению. В отличие от ненаправленных мутаций, их отличия повысят приспособленность их носителей. При отборе (например, половом - покорении сердца потенциально плодовитой красавицы) эти три близнеца будут иметь разные шансы, ведь отбор (и половой в том числе) оценивает именно фенотипы!

Второй механизм связан с эпигенетической регуляцией генной активности, особенно характерной для млекопитающих. В зависимости от состояния организма, он передаёт потомкам геномы с разными химическими "метками" на генах (метилированием или иными изменениями "букв" генетического текста). Эти метки влияют на активность генов и, значит, на признаки. Обычно эпигенетические метки обеспечивают тот вариант развития (в пределах нормы реакции), который более соответствует данным условиям среды. При изменившихся условиях эти метки могут быть стёрты или переставлены.