Выбрать главу

Развитие – это борьба двух противоположных тенденций – сохранение гомеостазиса и поиск новых организационных форм, уменьшающих локальную энтропию.

Этапность развития органического мира, на которой в значительной мере базируется периодизация геологической истории, – твердо установленный факт. Однако общая теория этапности разработана еще очень слабо, особенно это касается наиболее принципиального ее раздела «О закономерностях перехода от одного этапа к другому». До сих пор обычно недооцениваются изменения биоценотических связей в экосистемах прошлого, вызывавшиеся появлением новых групп организмов. Вместе с тем чрезвычайно большое внимание уделяется возможной роли глобальных катастроф.

Согласно концепции прерывистого равновесия, разработанной американскими исследователями С.Гоулдом, Н.Элдриджем и С.Стэнли, эволюция, во всяком случае на видовом уровне, по крайней мере в 95 % случаев идет не непрерывно, а своего рода скачками. Предполагается, что виды остаются практически неизменными на протяжении буквально миллионов лет, а затем за несколько десятков или сотен лет происходит формирование новых видов. Переход от вида к виду совершается в ее свете не посредством скачка в одном поколении, а путем накопления мутации и отбора. Всякое значительное изменение экологических условий влечет за собой перестройку всей организации сообщества животных.

Например, у животных, ведущих одинокий образ жизни, в случае необходимости возникает строгая иерархическая структура. В период нехватки корма такая организация сообщества определяет очередность доступа к пище. Доминирование может не только разделять, но и объединять животных, оно способствует процессу локализации, образованию структуры в сообществе взамен агрессивных взаимодействий особей.

Биологические системы обладают способностью сохранять и передавать информацию в виде структур и функций, возникших в прошлом в результате длительной эволюции.

Открыты подвижные генетические элементы, которые оказались замешаны в таких общебиологических явлениях, как азотфиксация, злокачественный рост клеток, работа иммунной системы и приспособление бактерий к антибиотикам, нестабильные мутации, материнская наследственность.

Нестойкое, нестабильное состояние гена, когда он начинает мутировать в десятки, сотни раз чаще обычного, связано не с изменениями внутри самого гена, а с введением в район его расположения определенного «контролирующего» элемента, способного блуждать по хромосомам. Эти элементы влияют на «включение» и «выключение» генов, т. е. на темп наследственной изменчивости. Одно из самых удивительных открытий для генетиков в последние 15–20 лет состояло в осознании повсеместности подвижных элементов, общности их строения и причастности к самым разным генетическим явлениям. Подвижные гены имеют на одном и другом конце повторы. Такие генетические тексты, обрамленные повторами, начинают вести свою отдельную от общей наследственной системы жизнь. Именно такого рода структуры получают возможность увеличивать число своих копий в хромосомах. Они подчиняют своему звучанию близлежащие гены, которые либо замолкают, либо усиливают активность, либо начинают работать в другом режиме. Включив в свой состав участок ДНК, отвечающий за самоудвоение, подвижный элемент превращается в плазмиду, которая самостоятельно размножается вне дочерней хромосомы у бактерий и вне ядра в клетках высших организмов.

В классической генетике: мутация возникает случайно; им подвержены единичные особи; их частота очень мала. В «подвижной генетике» изменения не случайны, зависят от типа подвижного элемента; им подвержены много особей; их частота велика, может достигать десятка процентов.

Именно с мобильностью активных элементов связывают обнаруженные в природных популяциях дрозофил регулярные вспышки мутации определенных генов. Темп мутационного процесса непостоянный, так, время от времени популяции или виды вступают в «мутационный» период. Самое поразительное открытие в генетике за последнее время – это возможность с помощью мобильных элементов переносить гены или группы генов от одних видов к другим (иногда к самым далеким), т. е. благодаря перемещающимся элементам генофонды всех организмов объединены в общий генофонд всего живого мира. Это особенно ярко продемонстрировали плазмиды с детерминантами устойчивости к антибиотикам в колоссальном эксперименте, невольно поставленном человеком на бактериях. С помощью генсектицидов человек расширяет эксперимент на насекомых, и в ответ их популяции, вероятно, охватываются определенными, быстро распространяющимися генетическими элементами, повышающими устойчивость организма («генетическая экспансия»). Предполагается, что когда-то в клетках насекомых поселились бактерии – симбионты, которые постепенно передали большинство своих генов в ядро и превратились в митохондрии и пластиды. Это замечательный пример переноса генов от про – к эукариотам. Способность клеток одного вида воспринимать ДНК от других, иногда эволюционно далеких видов, возможность горизонтального переноса генов считается «одним из главных чудес XX века». Классическая генетика гласит: каждый ген располагается на своей хромосоме и занимает на ней строго фиксированное положение. Сейчас известно много вариантов перемещающихся элементов, которые могут менять свое место на хромосоме и даже перемещаться с хромосомы на хромосому. Таким образом могут рождаться новые признаки организма.

Однако способность системы обмениваться информацией с внешней средой, увеличивать или уменьшать число элементов-признаков, сохранять устойчивость еще не делает эту систему развивающейся.

Порождаемая неравновесными внешними условиями неустойчивость приводит к увеличению интенсивности диссипации, вследствие чего создаются условия возникновения новой неустойчивости. Иными словами, в системе увеличивается интенсивность протекания некоторых необратимых процессов, благодаря чему и отклонение системы от равновесия становится еще большим. Это означает, что вероятность существования такого класса флуктуаций, по отношению к которым новые процессы становятся неустойчивыми, возрастает.