Приведем выдержку из статьи Афанасьева М.Б «Транспортный поток», чтобы показать очевидную неадекватность традиционного гидродинамического подхода для уплотненного движения транспортных потоков, как это было отмечено Семеновым В.В.[9].
«…Отметим, что в соответствии с традиционной теорией транспортных потоков, ориентированной на гидродинамическую модель, транспортный поток можно характеризовать тремя основными параметрами: интенсивностью N, средней скоростью V и плотностью D. Эти параметры связаны основным уравнением транспортного потока: N = DV.
Графически это уравнение представляет собой основную диаграмму транспортного потока, общий вид которой показан на рис. 1.
Рис. 1. Основная диаграмма транспортного потока.
Пользуясь уравнением и диаграммой, можно определять характеристики транспортного потока. Так, средняя скорость выражается через тангенс угла наклона прямой, соединяющей начало координат с точкой, координаты которой характеризуют определенную интенсивность и плотность (N/D). Максимально возможная при данных условиях интенсивность движения, как это следует из диаграммы, достигается при определенной плотности транспортного потока (точка A на диаграмме) и называется пропускной способностью полосы движения или дороги в целом. Характерно, что при плотности потока, большей, чем в точке A, интенсивность движения снижается. Объясняется это тем, что при большой плотности движения, часто возникают заторы, снижается скорость и это приводит к уменьшению количества автомобилей, проходящих в единицу времени через какое-либо сечение или участок дороги. Из основной диаграммы и уравнения транспортного потока следует очень важный для регулирования движения вывод: в тех случаях, когда возникает потребность пропустить по дороге максимально возможное количество автомобилей, необходимо установить с помощью знаков определенный режим скорости, который обеспечивает наибольшую интенсивность» [10].
B. В. Семенов и ряд указанных выше специалистов США показали, что гидродинамическая модель неприменима для движения транспортных потоков высокой плотности, поэтому, на наш взгляд, используемые общие понятия, определения и уравнения, приведенные выше, не могут адекватно описывать и объяснять все ситуации в транспортных потоках.
В связи с этим пришлось ввести, на наш взгляд, более адекватную модель движения транспортного потока, которую и приведем ниже.
Рассмотрим процесс формирования транспортных потоков на магистралях без светофоров (без регулируемых перекрестков) [5].
Водитель, двигаясь с определенной скоростью по полосе движения, соблюдает дистанцию безопасности. Ее протяженность зависит от скорости движения и определяется из следующего соотношения:
1дб = τз · v + v2/50,
где τз — время задержки, то есть время реакции водителя на изменение окружающей обстановки; v — скорость автомобиля.
Если окружающая обстановка для водителя является стабильной и не беспокоит его, то, как показывает опыт, в среднем τз составляет около 0,5 сек, что характерно при стабильном движении автомобилей по выбранным им полосам движения значительное время, например, на междугородних магистралях-хайвеях со скоростью до 100 км/час.
При снижении скорости за предел в 30 км/час, например, при повышении плотности транспортного потока, автомобили сближаются, появляется своего рода теснота, которая увеличивается с уменьшением скорости. Обстановка на дороге становится более сложной и время задержки увеличивается. Опыт показывает, что в этом случае τз увеличивается до 1 сек.
При высоких скоростях движения, начиная от 90-100 км/час, напряжение водителя также увеличивается, так как опасность возрастает, и τз снова увеличивается до 1 сек.
Однако время задержки 0,5 секунды сохраняется при скоростях автомобиля от 30 км/час до 90-100 км/час только при стабильном движении автомобилей, без «перемешивания» потока, то есть без частых смен автомобилями полос движения. А это «перемешивание», как правило, происходит в городских условиях при наличии регулярно расположенных, частых въездов на магистраль и частых съездов с нее. Характерным примером этого является «Третье транспортное кольцо» (ТТК) Москвы. В этом случае ситуация для водителя является сложной и время задержки составляет около 1 секунды.