Выбрать главу

В первую очередь к ним относятся, например, задачи по обнаружению и исследованию нефтяных загрязнений Мирового океана и по оценке его биопродуктивности. В ближнем инфракрасном диапазоне чистая вода полностью поглощает падающий на нее свет, а загрязненная вода хоть и немного, но его отражает. Аналогично влияет на отражение воды в этом диапазоне и содержание в воде водорослей и других взвесей. Поэтому пятна нефтяных загрязнений Мирового океана и его районы с высоким содержанием различных примесей проявляются на спектрозональных снимках (например, на отечественных пленках типа СН-6, СН-8) в виде характерных розовых пятен.

Еще более высокими возможностями выделения тонких спектральных отличий различных природных образований обладают методы многозональной фотосъемки, основанные на проведении синхронной съемки природных объектов в нескольких узких спектральных интервалах. Разработанный специалистами СССР и ГДР многозональный космический фотоаппарат МКФ-6 является одним из наиболее совершенных аппаратов подобного класса. При его помощи съемка поверхности Земли может осуществляться одновременно в шести зонах спектра.

В первых экспериментах по исследованию земных ресурсов использовались зональные светофильтры, имевшие максимумы пропускания света на длинах волн 480, 555, 600, 665, 730 и 840 нм. Ширина каждой съемочной зоны была довольно небольшой и не превышала 40 км. Кривые спектральной чувствительности всех съемочных диапазонов фотоаппарата МКФ-6 приведены на рис. 4. При съемке с высоты 250 км каждый снимок охватывает поверхность Земли площадью 115 × 165 км с разрешением на местности порядка 10 − 20 м. В аппарате МКФ-6 используются различные типы фотоматериалов и для их фотометрической калибровки в каждый кадр в момент съемки впечатывается фотометрический клин.

Первые летные испытания фотоаппарата МКФ-6 были проведены в 1976 г. при полете космического корабля «Союз-22» в рамках эксперимента «Радуга», а в настоящее время этот аппарат устанавливается уже в качестве штатного на всех ОКС типа «Салют».

Рис. 4. Кривые спектральной чувствительности съемочных диапазонов фотоаппарата МКФ-6

Анализ и интерпретация фотоизображений Мирового океана, полученных в отдельных зонах, производится с использованием четырехзонального проектора МСП-4, с помощью которого осуществляется проекция на специальный экран увеличенных совмещенных изображений. При этом изображение на экране МСП-4 можно получить в реальных или условных цветах.

Использование многозональных принципов фотосъемки Мирового океана позволяет регистрировать довольно тонкие вариации цвета океанской поверхности и решать, в частности, задачу изучения распределения зон повышенной биопродуктивности океана в масштабах всей Земли. Естественно, для решения этих задач многозональные космические фотоаппараты должны иметь высокие абсолютные (до 15 − 20 %) и относительные (до 3 − 5 %) точности фотометрических измерений, что вполне достижимо при современном развитии этого направления.

Однако при всех своих достоинствах фотографические методы исследования Земли из космоса имеют один существенный недостаток, связанный с необходимостью доставки экспонированных фотоматериалов на Землю для их последующей обработки. Особенно это касается методов исследования Мирового океана, которые из-за быстрой изменчивости протекающих в нем процессов должны иметь высокую оперативность и периодичность поступления информации.

Для решения многих задач океанологии и, что особенно важно, для прогноза тех или иных явлений в Мировом океане океанологам необходимо получать информацию с запаздыванием не более нескольких часов и с периодичностью до нескольких раз в сутки. Естественно, в этом случае фотографические методы помочь океанологам не могут и данная проблема может быть решена только с использованием телевизионных систем.

Первые телевизионные изображения поверхности Земли из космоса были получены еще в начале 60-х годов, при запусках первых метеорологических ИСЗ. Хотя эти изображения имели низкое пространственное (порядка 1 − 2 км) и спектральное (8 − 16 градаций интегральной яркости в области спектра 500 − 800 нм) разрешение, они позволяли определять участки Мирового океана, покрытые льдом, выделять мелководные участки, изучать крупные океанские течения и т. д.

Наиболее широкое распространение за прошедшие годы получили так называемые телевизионные системы с механическим сканированием луча. В такой системе (рис. 5) развертка изображения поверхности Земли вдоль трассы полета ИСЗ осуществляется за счет движения самого ИСЗ, а в поперечном направлении − за счет качания приемной телевизионной трубки или специального зеркала.

Пространственное разрешение в этой телевизионной системе определяется мгновенным полем зрения оптической системы, а спектральное − характеристиками разделительных фильтров и чувствительностью приемников излучения. Ширина полосы обзора зависит от высоты полета ИСЗ и угла качания поворотного зеркала. Информация с телевизионной системы может передаваться на Землю в реальном масштабе времени или записываться на бортовом магнитофоне для ретрансляции в подходящий момент при пролете ИСЗ над пунктом связи.

В начале 70-х годов появились многоканальные космические сканирующие системы, имеющие пространственное разрешение лучше 100 м и спектральное разрешение − лучше 100 нм. С помощью этих приборов можно уже получать информацию, сопоставимую по своим фотометрическим и другим характеристикам с информацией фотографических систем.

Телевизионные изображения поверхности Земли, переданные, например, ИСЗ «Лэндсат», имели пространственное разрешение около 70 м при площади кадра 185 × 185 км. Электромеханическая сканирующая телевизионная система этого ИСЗ производила синхронную съемку поверхности Земли в четырех зонах видимого и ближнего инфракрасного диапазонов спектра (в зонах длин волн 0,5 − 0,6; 0,6 − 0,7; 0,7 − 0,8 и 0,8 − 1,1 мкм), что позволяло после соответствующей обработки на ЭВМ получать изображения подстилающей поверхности в так называемых условных цветах с хорошей цветовой градацией различных природных образований.

С помощью этой системы можно было уже решать значительно более широкий круг океанологических задач. В специальной научной литературе приведены данные о том, что на некоторых изображениях, переданных ИСЗ «Лэндсат», определены районы Мирового океана, загрязненные нефтепродуктами и отходами промышленных предприятий, обнаружены неизвестные ранее районы повышенной биопродуктивности, выделены мелководные участки, зоны смешения речных и морских вод, обнаружены следы внутренних волн и т. д.

Рис 5. Принцип работы многозональной телевизионной сканирующей системы: 1 − качающееся зеркало, 2 − зеркальный объектив, 3 − светофильтры, 4 − приемники излучения

При этом можно отметить, что съемка в коротковолновом диапазоне (0,5 − 0,6 мкм), где поглощение света в океанской воде минимально, позволяет наилучшим образом решать задачу изучения подводного рельефа и биопродуктивности вод, а съемка в длинноволновых диапазонах (0,7 − 0,8 и 0,8 − 1,1 мкм) − более отчетливо выделять поверхностные эффекты. Наконец, совместная обработка данных коротковолновых и длинноволновых диапазонов способствует эффективному обнаружению поверхности океана, загрязненной нефтепродуктами.

полную версию книги