Когато физиците започнали да дълбаят в субатомното царство, осъзнали, че то не било просто различно от това, което знаем, но различно от всичко, което въобще можем да си представим. „Тъй като атомното поведение е толкова различно от обикновеното поведение“, отбелязал веднъж Ричард Фейнман, „много е трудно да се свикне с него и изглежда странно и загадъчно на всеки — както на начинаещия, така и на опитния физик.“ Когато Фейнман изказал това мнение, физиците били имали вече цял век, за да се приспособят към странното поведение на атомите. Така че нека си представим как Ръдърфорд и колегите му са се чувствали в началото на 1910-те, когато всичко било съвсем ново.
Един от хората, работещи с Ръдърфорд, бил кроткият и приветлив млад датчанин на име Нилс Бор. През 1913 г., когато размишлявал върху строежа на атома, на Бор му дошла на ум една толкова вълнуваща идея, че отложил сватбеното си пътешествие, за да напише труд, който станал епохален. Тъй като физиците не можели да видят с очите си нещо, което е толкова малко като атома, те се опитали да разгадаят строежа му, според това какво е поведението му, когато извършвали нещо с него, както Ръдърфорд бил направил, като бомбардирал лист от златно фолио с алфа-частици. Понякога, което не е изненадващо, резултатите на тези експерименти били озадачаващи. Една от загадките, която продължила дълго време, била с отчетите в спектъра на дължините на вълните на водорода. Отчетите показвали, че атомите на водорода излъчват енергия само с определени дължини на вълните. Било като че ли някой, който е под наблюдение, все се появява на определени места, но никога не е забелязан да пътува между тях. Никой не можел да обясни, защо това било така.
Докато размишлявал върху този проблем, на Бор му хрумнала идея как да го разреши и набързо написал известния си труд. Наречен За строежа на атомите и молекулите, в него се обяснявало как електроните могат да избягват падането си върху ядрото, като се изказвало предположението, че те могат да заемат само добре дефинирани орбити. Според новата теория електрон, движещ се между орбитите, ще изчезва от една и ще се появява веднага отново в друга, без да минава през пространството помежду им. Тази идея — известният „квантов скок“ — разбира се, е абсолютно странна, но била твърде добра, за да не е вярна. Според нея не само че електроните бивали предпазвани от катастрофално движене по спирала към ядрото; тя давала обяснение на озадачаващите дължини на вълните. Електроните се появявали само в определени орбити, защото можели да съществуват само в определени орбити. Това било зашеметяващо прозрение и за него Бор получава Нобелова награда за физика през 1922 г., една година след като Айнщайн получава своята.
Междувременно неуморният Ръдърфорд, завърнал се в Кеймбридж като наследник на Дж. Дж. Томсън начело на Кавендишката лаборатория, предлага модел, който обяснява, защо ядрата не експлодират. Забелязал, че вероятно ги възпира някакъв вид неутрализиращи частици, които нарича неутрони. Идеята била проста и удобна, но не и лесна за доказване. Колегата на Ръдърфорд — Джеймс Чадуик, посветил единайсет неуморни години в търсене на неутрони и накрая успял през 1932 г. Той също получава Нобелова награда за физика през 1935 г. Както Буурс и колегите му изтъкват в тяхната история по тази тема, забавянето на това откритие навярно е много хубаво нещо, тъй като овладяването на неутрона било от съществено значение за разработката на атомната бомба. (Тъй като неутроните нямат заряд, те не биват отблъсквани от електричните полета в сърцевината на атома и по този начин могат да бъдат изстрелвани като малки торпеда в атомното ядро, което дава началото на унищожителния процес, известен като делене на ядрото.) Ако неутронът е бил изолиран през 1920-те, отбелязват те, „голяма е била вероятността атомната бомба да бъде разработена първо в Европа, несъмнено от германците.“
Но, както стояли нещата, европейците били напълно погълнати опитвайки се да разберат поведението на електрона. Главният проблем, пред който били изправени, е, че електронът понякога имал поведението на частица, а понякога на вълна. Тази невъзможна двойнственост докарала физиците до полуда. През следващото десетилетие из цяла Европа яростно разсъждавали, пишели и предлагали конкуриращи се хипотези. Във Франция принц Луи-Виктор дьо Брой, потомък на херцогска фамилия, открил, че някои аномалии в поведението на електроните изчезвали, когато били възприемани като вълни. Наблюдението привлякло вниманието на австриеца Ервин Шрьодингер, който направил някои умели подобрения и измислил удобна система, наречена вълнова механика. Почти по същото време германският физик Вернер Хайзенберг предложил конкурентна теория наречена матрична механика. Тя била толкова сложна математически, че почти никой не я разбирал, включително и самият Хайзенберг („Дори не знам какво е матрица“ — отчаяно споделил с приятел Хайзенберг по едно време), но изглежда, че това разрешило някои проблеми, които вълните на Шрьодингер не успели да обяснят.