Выбрать главу

Основният постулат на теорията на относителността е, че научните закони трябва да са едни и същи за всички свободно движещи се наблюдатели независимо от тяхната скорост. Това е вярно за Нютоновите закони за движение, но сега идеята бе разширена и включи Максуеловата теория и скоростта на светлината: всички наблюдатели би трябвало да измерват една и съща скорост на светлината независимо от това, колко бързо се движат. Тази проста идея има няколко забележителни следствия. Може би най-известните са еквивалентността между маса и енергия, обобщена в знаменитото уравнение на Айнщайн E = mc2 (където E е енергията, m е масата, а c е скоростта на светлината), и законът, че нищо не може да се движи със скорост, по-голяма от тази на светлината. Тъй като масата и енергията са еквивалентни, енергията на едно тяло, дължаща се на неговото движение, ще увеличава масата му. С други думи, тя ще затруднява нарастването на скоростта му. Този ефект е наистина значим само при обекти, движещи се със скорости, близки до скоростта на светлината. Така например, при 10% от скоростта на светлината масата на обекта е едва 0,5% над нормалната, докато при 90% тя ще е повече от два пъти нормалната му маса. Когато скоростта на обекта се доближи до скоростта на светлината, масата му нараства още по-бързо и за да увеличи още повече скоростта си, че му е необходима още по-голяма енергия. Фактически той никога няма да достигне скоростта на светлината, защото тогава масата му би трябвало да стане безкрайна, а поради еквивалентността на маса и енергия тялото би трябвало да получи безкрайно количество енергия, за да я достигне. Следователно теорията на относителността завинаги ограничава движението на всички нормални тела до скорости, по-ниски от светлинната. Само светлинните или други вълни, които нямат собствена маса, могат да се движат със скоростта на светлината.

Едно също толкова забележително следствие от теорията на относителността е революционната промяна в представите ни за пространство и време. Според теорията на Нютон, когато изпратим светлинен импулс от едно място на друго, различните наблюдатели биха се съгласили за времето, необходимо за изминаването на този път (защото времето е абсолютно), но невинаги ще се съгласят за изминатия от светлината път (защото пространството не е абсолютно). Понеже скоростта на светлината е тъкмо изминатото от нея разстояние, разделено на изтеклото време, за различните наблюдатели скоростта на светлината ще е различна. Според теорията на относителността обаче скоростта на светлината трябва да е еднаква за всички наблюдатели. Но и за тях изминатото от светлината разстояние ще е различно, така че в случая и мнението им за това, колко време е изтекло, ще е различно. (Изтеклото време представлява изминатото от светлината разстояние — за което мненията на наблюдателите се различават, разделено на скоростта на светлината — за което мненията им съвпадат.) С други думи, теорията на относителността слага край на идеята за абсолютно време! Излиза, че всеки наблюдател трябва да има собствена мярка за времето, отчетено по часовника, който носи със себе си, и че едни и същи часовници на различни наблюдатели няма непременно да съвпадат.

Всеки наблюдател може да използва радар, за да каже къде и кога е настъпило дадено събитие, като изпрати светлинен или радиовълнов импулс. Част от импулса се отразява от събитието, а наблюдателят измерва времето, когато ехото стигне до него. В такива случаи казваме, че момента на събитието е времето по средата между момента на изпращане на импулса и момента на пристигане на отражението: разстоянието на събитието е половината от времето за това пътуване в Двете посоки, умножено по скоростта на светлината. (В този смисъл събитието е нещо, което става в една-единствена точка в пространството в конкретен момент време.) Тази идея е илюстрирана на фиг. 2.1, която е пример за диаграма пространство-време. Използвайки тази процедура, наблюдателите, които се движат относно един друг, ще присвоят различни времена и местоположения на едно и също събитие. Измерванията на никой от двамата наблюдатели няма да са по-точни от тези на другия, но между тези измервания ще има връзка. Всеки наблюдател може точно да определи какво време и положение всеки друг наблюдател ще припише на едно събитие, ако знае относителната скорост на наблюдателя.