Выбрать главу

Макар светлината да се състои от вълни, квантовата хипотеза на Планк ни казва, че понякога тя има поведението на частици: може да се излъчва или поглъща само на порции или кванти. Същевременно принципът на неопределеността на Хайзенберг налага поведението на частиците в някои отношения да е като това на вълни: те нямат определено положение, а са „размити“ с определено вероятностно разпределение. Теорията на квантовата механика се основава върху съвсем нова математика, която вече не описва реалния свят с помощта на частици и вълни; единствено наблюденията върху този свят могат да се опишат по този начин. И така в квантовата механика се явява дуализъм между вълни и частици: в някои случаи е целесъобразно да мислим за частиците като за вълни, а в други е по-добре да мислим за вълните като за частици. Едно важно следствие от това е, че не сме в състояние да наблюдаваме така наречената интерференция между две групи вълни или частици. С други думи, гребените на една група вълни могат да съвпадат с падините на другата група. Тогава двете групи вълни се унищожават взаимно, а не се сумират в по-голяма вълна, както можем да очакваме (фиг. 4.1). Познат пример за интерференцията на светлината са цветовете, които често се наблюдават в сапунени мехури. Бялата светлина се състои от вълни с всички възможни дължини на вълната или цветове. За определени дължини гребените на вълните, отразени от едната страна на сапунения филм, съвпадат с падините, отразени от другата страна. Цветовете, отговарящи на тези дължини на вълната, липсват в отразената светлина и поради това тя изглежда оцветена.

inv_fig41-42.png

Поради дуалистичните представи, въведени от квантовата механика, интерференция може да настъпи и при частици. Известен пример в това отношение е експериментът с два процепа (фиг. 4.2). Да разгледаме една преграда с два тесни успоредни процепа. От едната страна на преградата е поставен източник на светлина с определен цвят (т.е. с определена дължина на вълната). По-голямата част от светлината ще попадне в преградата, но малка част ще премине през процепите. Да приемем сега, че сме поставили екран зад преградата. До всяка точка от екрана ще достигат вълни от двата процепа. В общия случай обаче разстоянието, което светлината трябва да измине от източника до екрана през двата процепа, ще бъде различно. Това означава, че фазите на вълните от двата процепа няма да са еднакви, когато стигнат до екрана: в някои места вълните ще се унищожават, а в други взаимно ще се усилват. В резултат ще се получи характерно изображение от светли и тъмни ивици.

Забележителното в случая е, че ако заменим източника на светлина с източник на частици, например електрони с определена скорост (което означава, че съответните вълни са с определена дължина), ще получим пак същия тип ивици. Още по-странно е, че ако имаме само един процеп, няма изобщо да получим ивици, а просто равномерно разпределение на електроните върху екрана. Поради това можем да приемем, че с отварянето на още един процеп просто се увеличава броят електрони, достигащи всяка точка от екрана, а в резултат на интерференция той фактически намалява на някои места. Ако пускаме електроните един по един към процепите, можем да очакваме всеки електрон да премине през единия или другия процеп, така че поведението му да е точно такова, каквото би било, ако имаше само един процеп — да се получи равномерно разпределение върху екрана. В действителност обаче дори когато пускаме електроните един по един, ивиците пак се наблюдават. Излиза, че всеки електрон минава и през двата процепа едновременно!

Явлението интерференция между частици бе от решаващо значение за изясняване на строежа на атома — този основен градивен елемент в химията и биологията, градивната тухличка за самите нас и за всичко около нас.

В началото на нашия век се смяташе, че подобно на планетите, които обикалят около Слънцето, електроните (частици с отрицателен електричен заряд) в атома обикалят около едно централно ядро, което носи положителен електричен заряд. Предполагаше се, че привличането между положителния и отрицателния заряд задържа електроните по техните орбити, също както гравитационното привличане между Слънцето и планетите задържа планетите по техните орбити. Трудното тук е, че според законите на механиката и електричеството, предхождащи квантовата механика, електроните биха губили енергия и биха се движили по спирала, докато се сблъскат с ядрото. Това значи, че атомът, а фактически цялата материя, бързо биха колапсирали до състояние с много висока плътност. Едно частно решение на този проблем бе намерено от датския учен Нилс Бор през 1913 г. Според него електроните не могат да се движат по орбити на всякакво разстояние от ядрото, а само на определени характерни разстояния. Ако предположим, че на всяко от тези разстояния могат да се движат по орбита само един или два електрона, това би решило проблема за свиването на атома, тъй като електроните няма да могат при движението си по спирала да проникнат по-навътре и ще запълнят орбитите с най-малки разстояния и енергии.