Положителната енергия на освобождаваното излъчване ще се балансира от поток частици с отрицателна енергия към черната дупка. От уравнението на Айнщайн E = mc2 (където E е енергията, m е масата, а c е скоростта на светлината) енергията е пропорционална на масата. Ето защо потокът от отрицателна енергия към черната дупка ще намали масата й. Когато черната дупка губи маса, площта на хоризонта й на събития става по-малка, но това намаление в ентропията на черната дупка е повече от компенсирано от ентропията на освободеното излъчване, така че вторият закон никога не се нарушава.
Освен това, колкото по-малка е масата на черната дупка, толкова по-висока е нейната температура. Така че, когато черната дупка губи маса, нейната температура и скорост на излъчване нарастват и тя започва по-бързо да губи маса. Какво става, когато масата на черната дупка стане изключително малка, не е съвсем ясно, но най-разумното предположение е, че тя напълно ще изчезне в един гигантски последен взрив, равностоен на експлозията на милиони водородни бомби.
Температурата на една черна дупка с маса няколко пъти слънчевата би трябвало да е само с десет милионни от градуса по-висока от абсолютната нула. Тя е много по-ниска от температурата на микровълновото лъчение, изпълващо Вселената (около 2,7° над абсолютната нула), така че черните дупки винаги излъчват по-малко, отколкото поглъщат. Ако съдбата на Вселената е да продължава да се разширява вечно, температурата на микровълновото лъчение накрая ще спадне под температурата на такава черна дупка и тя ще започне да губи маса. Но дори и тогава нейната температура ще бъде толкова ниска, че ще са необходими приблизително 1066 години, за да се изпари напълно. Този срок е много по-дълъг от възрастта на Вселената, която е едва 1×1010 — 2×1010 години. От друга страна, както се спомена в глава 6, би трябвало да съществуват първични черни дупки с много по-малка маса, образувани от колапс на неправилностите в съвсем началните стадии на Вселената. Температурата на такива черни дупки би трябвало да е много по-висока и излъчването им да е много по-енергично. Животът на една първична черна дупка с начална маса 109 тона е приблизително равен на възрастта на Вселената. Първичните черни дупки с начални маси под тази стойност би трябвало вече да са напълно изпарени, но малко по-масивните от тях продължават да освобождават излъчване под формата на рентгенови и гама-лъчи. Тези рентгенови и гама-лъчи са като светлинните вълни, но дължината им е много по-малка. Такива дупки едва ли заслужават прилагателното „черни“: всъщност те са нажежени до бяло и излъчват енергия около 10 000 мегавата.
Една такава черна дупка е в състояние да поддържа десет големи електроцентрали, само ако можем да впрегнем енергията й. Това ще е много трудно обаче: масата на черната дупка Ще е като планина, пресована в по-малко от 10–12 инча — размерът на атомното ядро! Ако на земната повърхност има една от тези черни дупки, по никакъв начин не можем да й попречим да стигне центъра на Земята. Тя ще трепти около центъра на Земята дотогава, докато накрая достигне центъра. Следователно единственото място, където трябва да се постави такава черна дупка, за да можем да оползотворим излъчваната от нея енергия, ще е на орбита около Земята, а единственият начин да я накараме да се движи в орбита около Земята ще е да я примамим там, като струпаме огромна маса пред нея — нещо като морков пред магаре. Предложението не изглежда особено практично, поне за близкото бъдеще.
Но дори да не можем да впрегнем излъчването от тези първични черни дупки, какви са шансовете ни да ги наблюдаваме? Можем да търсим гама-лъчите, които първичните черни дупки излъчват през по-голямата част от живота си. Макар лъчението от повечето от тях да е много слабо, защото са твърде далеч, може би общото количество от всички тях ще е откриваемо. Всъщност ние наблюдаваме такъв фон от гама-лъчи: на фиг. 7.5 се вижда как наблюдаваният интензитет се различава за различните честоти (броят вълни в секунда). Но този фон би могъл да е и вероятно е генериран от процеси, различни от първичните черни дупки. Пунктираната линия на фиг. 7.5 показва как интензитетът трябва да варира с честотата за гама-лъчите, освобождавани от първични черни дупки, ако те са средно 300 на кубична светлинна година. Поради това може да се каже, че наблюдаването на гама-лъчевия фон не представлява някакво положително доказателство за първични черни дупки, но сочи, че средно те не могат да са повече от 300 на кубична светлинна година във Вселената. Тази граница означава, че първичните черни дупки вероятно представляват най-много една милионна от материята във Вселената.