Выбрать главу

След като частните теории, които вече имаме, са достатъчни, за да правим точни предсказания във всички случаи с изключение на екстремните, търсенето на окончателна теория за Вселената изглежда задача, трудна за оправдание от практическа гледна точка. Струва си да отбележим, че при все че подобни аргументи са използвани и срещу теорията на относителността, и срещу квантовата механика, тези теории са ни дали и ядрената енергия, и революцията в микроелектрониката! Ето защо откриването на завършена единна теория може и да ^ не помогне за оцеляването ни. Възможно е дори да не окаже влияние върху начина на живот. Но още от зората на цивилизацията хората не са се задоволявали да гледат на събитията като на нещо необяснимо и без взаимна връзка. Те са били жадни да разберат скрития ред в света. И днес ние горим от желание да разберем защо сме тук и откъде сме дошли. А най-съкровеният стремеж на хората към познание е достатъчно оправдание да продължим търсенето. И нашата цел е не друго, а пълното описание на Вселената, в която живеем.

2. Пространство и време

Сегашните ни представи за движението на телата датират от времето на Галилей и Нютон. Преди тях хората са вярвали на Аристотел, според когото естественото състояние на едно тяло е покоят, от който може да бъде изведено чрез сила или импулс. Оттук следвало, че тежкото тяло трябва да пада по-бързо от лекото, защото по-силно ще се притегля от Земята.

Освен това учението на Аристотел твърди, че човек може да изведе всички закони, на които се подчинява Вселената, чрез просто размишление: няма нужда от наблюдателна проверка. И така никой преди Галилей не си е дал труд да провери дали тела с различно тегло действително падат с различна скорост. Твърди се, че Галилей демонстрирал погрешността в схващането на Аристотел, като пускал тежести от наклонената кула в Пиза. Тази история почти сигурно не е вярна, но Галилей наистина е правил нещо подобно: търкалял топки с различно тегло по наклонена равнина. Ситуацията е сходна с отвесното падане на телата, но по-лесно се наблюдава, защото скоростите са по-малки. Измерванията на Галилей показали, че независимо от теглото си всяко тяло увеличава скоростта си с една и съща степен. Ако например пуснете топка по наклон от един метър на всеки десет метра, топката ще се движи надолу по наклона със скорост около един метър в секунда след първата секунда, два метра в секунда след втората секунда и т.н. независимо колко е тежка. Разбира се, оловото ще пада по-бързо от перцето, но това е така само защото перцето бива забавяно от съпротивлението на въздуха. Ако пуснем две тела, за които въздушното съпротивление не е много голямо, например две различни оловни тела, те ще падат с еднакви скорости.

Нютон използвал изчисленията на Галилей като база за своите закони за движение. При експериментите на Галилей, когато едно тяло се търкаля по наклонена равнина, върху него действа винаги една и съща сила (неговото тегло), която го кара постоянно да увеличава скоростта си. Това показва, че истинският ефект на една сила се изразява винаги в промяна на скоростта на дадено тяло, а не просто в привеждането му в движение, както се мислело дотогава. Това значи също, че ако върху едно тяло не действа сила, то ще продължава да се движи по права линия с една и съща скорост. Тази идея е изразена ясно за първи път в книгата на Нютон „Математически принципи“, публикувана през 1687 г., и е известна като първи закон на Нютон. Какво става с тяло, когато върху него действа сила, посочва вторият закон на Нютон. Според него тялото ще се ускорява или ще променя скоростта си пропорционално на силата. (Например ускорението ще е два пъти по-голямо при два пъти по-голяма сила.) Освен това ускорението е толкова по-малко, колкото по-голяма е масата (или количеството вещество) на тялото. Една и съща сила предизвиква два пъти по-малко ускорение при два пъти по-голяма маса. (Познат пример е автомобилът: колкото по-мощен е двигателят, толкова по-голямо е ускорението, но колкото по-тежка е колата, толкова по-малко е ускорението при един и същ двигател.)