На рис. 5 «0 x1 x2 x3 » — пространство параметров, каждый из которых является мерой одной из трех частных ошибок управления в составе трехмерного вектора ошибки управления. Иными словами, идеальному режиму управления соответствует начало координат. Радиус-вектор, идущий сплошной линией из начала координат, — вектор ошибки управления в момент времени t = 0 . Траектории, определяемые последовательностью положений, изменяющихся с течением времени: « t = 0 , t = t1 , t = t2 , t = t3 » и « t = 0 , t = t11 , t = t12 , t = t13 = t3 » — ведут из одной и той же точки в пространстве параметров в одно и то же начало координат и переход по любой из них длится одинаковое время t3 . Выбор переходного режима (траектории) субъективно произволен, но первая траектория — оптимальна при упорядоченности вектора целей управления ( x1 , x2 , x3 ), вторая — оптимальна при упорядоченности ( x3 , x2 , x1 ). В реальном процессе упорядоченность параметров в векторе целей, воистину принятая в управление, выражается в порядке изчезновения частных ошибок управления (обнуления компонент вектора ошибки), вне зависимости от деклараций о благих намерениях управленцев. Именно в соответствии с этим принципом единства теории и практики управления ранее было высказано утверждение о первоприоритетности в векторе целей библейской цивилизации спектра деградационно-паразитических потребностей, подавляющего в управлении демографически обусловленные потребности.
Предположим, что на рис. 5: x1 — мера недостачи в обществе возможностей в получении образования подрастающим поколением; x2 — мера недостачи в питании, одежде, жилье, инфраструктурах; x3 — мера дефицита в роскоши и продукции деградационно-паразитического спектра потребностей. В силу действия неформализуемых взаимно изключающих обусловленностей параметров x1 и x3 при упорядоченности ( x3 , x2 , x1 ), система вряд ли пройдет по соответствующей такой упорядоченности траектории далее половины пути. Скорее всего, вследствие действия не формализованных в модели факторов, она уклонится в иной ошибочный режим, показанный пунктирным радиус-вектором, идущим из начала координат, который возможно не будет устойчивым балансировочным режимом. Именно на этот путь ступили “демократизаторы” и хотят вести по нему народы региональной цивилизации России.
Тому, кто себе в лоб забил алкогольно-никотиновый кол, лично непотребно образование, новое знание, поскольку оно — в тягость наркотически угнетенному. А его потомство, вследствие вероятностно предопределённых генетических нарушений, как в биомассе организма, так и в искалеченной и подавленной в процессе воспитания психике, возможно не сможет освоить и те знания и культурные навыки, что были естественным достоянием предков. Это приведёт к падению культуры производства и уронит спектры производства и потребления.
“Саморегуляция” рынка без разделения демографически обусловленного и деградационных спектров будет выглядеть на рис. 5 по этим информационным причинно-следственным обусловленностям как хаотичное мельтешение ненулевого радиус-вектора в пространстве параметров, относительно какого-то среднестатистического положения, управляемого извне внесистемными факторами. “Саморегуляция” такого рода показана на рис. 5 как клубковидная “каракуля”.
Сказанное означает, что ограниченность трудовых ресурсов, квалификации, производственных мощностей в отраслях, энергопотенциала общества, после оценки нехватки в удовлетворении потребностей общества предопределяет как разделение демографически обусловленного и деградационно-паразитического спектров, так и формирование номенклатуры (каталога) демографически обусловленного спектра и упорядоченности её по приоритетности значимости ликвидации недостачи.
В процессе реального управления, в том числе и на стадии планирования, для разных этапов переходного процесса (рис. 5) понятию демографической обусловленности может соответствовать несколько разная номенклатура и её упорядоченность, определяющая демографически обусловленный вектор целей (контрольный спектр параметров). Эти различия должны находить своё отражение как в критерии оптимальности многошагового переходного процесса в целом, так и в критериях оптимальности каждого из шагов в планируемом переходном процессе.
Оптимизация каждого из множества производственных циклов ΔT вне объёмлющей задачи оптимизации по минимуму времени переходного процесса исчерпания недостаточности демографически обусловленного спектра потребления — изначально методологически несостоятельная задача, поскольку это — “оптимальный” шагнеизвестно куда. Но и оптимизация переходного макроэкономического процесса — лишь частная задача в процессе перехода к жизни общества в ладу с объёмлющей его биосферой.
Теперь разсмотрим метод динамического программирования, поскольку, хотя и было показано, что алгоритмы решения задачи об оптимальном наведении средств поражения на цель в нынешней цивилизации не могут не существовать, тем не менее, необходимо содержательно обсудить ещё некоторые “само собой” разумеющиеся очевидности, касающиеся оптимального выбора траекторий многопараметрических переходных процессов.
По отношению к макроэкономической системе её “скоростные” параметры, прежде всего, определяются энергопотенциалом. Поэтому в макроэкономических интерпретациях задача «наведения оружия на цель» предстает как задача о темпах роста энергопотенциала и его разпределении: 1) на производство демографически обусловленного спектра потребностей и 2) на развитие и поддержание производственной базы всех отраслей.
Математически такое решение может быть получено, в частности, на основе алгоритмов, реализующих метод динамического программирования (он может изпользоваться и для решения задач линейного программирования). Обстоятельное его изложение и конкретные алгоритмические модели решения тех или иных прикладных задач можно найти в специальной литературе. Здесь же мы опишем его структуру и затронем некоторые с ним связанные мировоззренческие вопросы.
Алгоритм метода динамического программирования осуществляет формализованный выбор оптимальной в некотором смысле траектории в n-мерном пространстве. Термин «динамическое программирование», также как и термин «линейное программирование», о котором речь шла ранее, — прижившиеся в Русском языке подстрочники, мало что говорящие о существе самих методов выбора математически формализованных наилучших вариантов решения практических задач управления, планирования, проектирования.
Аппарат динамического программирования позволяет решать задачи многопараметрической оптимизации в тех случаях, когда в силу разного рода объективно-математических причин (дискретность ограничений, нелинейности математической модели, нарушение свойства выпуклости и т.п.) стандартные алгоритмы решения задач линейного программирования неработоспособны.
Вполне понятно, что метод динамического программирования, как и прочие математические методы оптимизации, не изучался и не изучается в большинстве вузовских курсов СССР и России на специальностях, в которых владение им придаёт квалификации специалистов КАЧЕСТВЕННО более высокий уровень. Тем более в литературе не обсуждаются и философско-мировоззренческие аспекты нашедшие в нём своё алгоритмическое выражение.
В изложении существа метода динамического программирования мы опираемся на книгу “Курс теории автоматического управления” (Палю де Ла Барьер: французское издание 1966 г., русское издание — “Машиностроение”, 1973 г.), хотя и не повторяем его изложения. Отдельные положения взяты из ранее упоминавшегося курса “Изследование операций” Ю.П.Зайченко (Киев, “Вища школа”, 1979)[43].
43
Начало и конец описания метода динамического программирования отмечены абзацами, состоящими из звездочек. Изложение метода носит самостоятельный характер и приложимо к управлению любыми житейскими ситуациями, тем не менее, желающие могут его пропустить. Те же, кто, ознакомившись с ним, посчитают никчемным его изпользование в управлении житейскими обстоятельствами в повседневности — ошибаются: просто не надо его сводить до дурости, подразумевая, что обычный выход из дома на работу должен сопровождаться предварительными расчётами в столбик или на компьютере. В методе есть общежизненная суть, которая не сводится к формам прикладной арифметики.