Выбрать главу

Максвелл повторил опыты Кавендиша с электрометром Томсона и показал, что п может отличаться от 2 не более чем на 1/21600

«Что касается скрытности Кавендиша, — писал в 1891 г. известный электрофизик Хевисайд, — то она совершенно непростительна; это грех» Этот «грех» стоил Кавендишу славы открывателя точного закона электрических взаимодействий, который навсегда вошел в науку под названием закона Кулона.

Французский военный инженер, а с 1781 г. член Парижской Академии наук Шарль Огюстен Кулон (1736-1806) в 1777 г. исследовал кручение волос, шелковых и металлических нитей. Результатом этих исследований явилось открытие закона кручения :

где φ —угол кручения, Р — закручивающая сила, l - длина нити, r - ее радиус.

В 1784 г. Кулон сконструировал чувствительный прибор — крутильные весы. С помощью этих весовой открыл законы электрических и магнитных взаимодействий. Его опыты и выводы из них опубликованы им в 1782—1785 гг. в семи мемуарах. Аппарат Кулона представлял собой стеклянный цилиндр с измерительной шкалой по окружности, в крышке цилиндра имелись центральное и боковое отверстия. В центральное отверстие пропускалась серебряная нить, закрепленная на измерительной головке и проходящая по оси высокого стеклянного цилиндра, заканчивающегося упомянутой головкой. Нить несла легкое стеклянное коромысло, на котором находились шарик и противовес. В боковое отверстие пропускался стерженек, несущий наэлектризованный шарик.

В первом мемуаре 1785 г. Кулон исследовал отталкивающую силу и нашел, что при угловых расстояниях между шариками (которые первоначально при контакте получают одинаковые заряды) 36°, 18°, 9° нить закручивалась соответственно на 36°, 144°, 576°, т. е. силы росли обратно пропорционально квадратам расстояний.

Во втором мемуаре Кулон нашел закон взаимодействия магнитных полюсов.

Существенным моментом в работе Кулона было установление метода измерения количества электричества и количества магнетизма (магнитных масс). В научной системе единиц законы Кулона дают основную базу системы электрических и магнитных единиц. После Кулона стало возможным построение математической теории электрических и магнитных явлений.

Глава вторая. Развитие основных направлений физики в XIX в.

Развитие механики в первой половине XIX столетия

Прежде чем перейти к описанию событий в истории физики началаХ1Х столетия, расмотрим коротко развитие механики в первой половине XIX в.

Трудами Эйлера, Лагранжа и других математиков и механиков XVIII в. сформировалась та отрасль математического естествознания, которая получила название теоретической механики. В качестве таковой она выделилась из физики, и ее развитие было более тесно связано с развитием математики, чем физики.

В историю механики существенный вклад внесли и русские ученые: математик и механик М. В. Остроградский (1801-1862), имя которого встречается в физике в связи с теоремой Остроградского—Гаусса, П.Л.Чебышев (1821— 1894), А.М.Ляпунов (1857-1918) и многие другие.

Деятельность европейских и русских механиков XIX в. рассматривается в истории механики, и мы на ней останавливаться не будем. Мы упомянем здесь коротко о некоторых механиках, работавших после Лагранжа, продолживших его дело и внесших в механику новые понятия, важные для физики.

В 1803 г. вышел груд Луи Пуансо (1777—1859) «Элементы статики «Пуансо ввел новое динамическое понятие пары сил, изучил свойства пар, сформулировал общий закон сложения сил, действующих на тело, и общие условия равновесия.

В1811 г. вышел «Трактат о механике» Симеона Пуассона (1781—1840). В этом трактате Пуассон развивает и популяризирует традиции Лагранжа, иллюстрируя общие предположения многочисленными примерами. «Трактат» Пуассона долгие годы служил учебным пособием по механике.

Математик Жан Виктор Понселе (1788—1867), бывший солдат наполеоновской армии и русский военнопленный, ввел в механику важное понятие работы. Это понятие фигурирует и в «Трактате о механике твердых тел и о расчете действия машин» (1829.) Гас-пара Гюстава Кориолиса (1792—1843). Кориолис открыл также ускорение, испытываемое движущимися телами во вращающейся системе, и соответствующую силу инерции. Это ускорение ныне известно под названием «кориолисово ускорение», а сила — под названием «сила Кориодиса» (1835).

В 1829 г. вышла работа знаменитого немецкого математика К. ф. Гаусса (1777—1855) «Об одном новом общем принципе динамики». В этом сочинении Гаусс предлагал положить в основу механики вместо принципа наименьшего действия другой, который он формулировал следующими словами: «Движение системы материальных точек, связанных между собою произвольным образом и подверженных любым влияниям, в каждое мгновение происходит в наиболее совершенном, какое только возможно, согласии с тем движением, каким обладали бы эти точки, если бы все они стали свободными, т. е. оно происходит с наименьшим возможным принуждением, если в качестве меры принуждения, примененного в течение бесконечно малого мгновения, принять сумму произведений массы каждой точки на квадрат величины ее отклонения от того положения, которое она заняла бы, если бы была свободной».