(2.18)
где а - большая полуось эллипса. Эта формула называется интегралом энергии. Если точка m движется по кругу, т.е. r = а, то из уравнения (2.18) следует
(2.19)
а если точка m движется по параболе, то а = ¥ и
(2.20)
Скорость vc называется круговой скоростью, а vп - параболической скоростью. Скорость эллиптического движения vэ заключена в пределах 0 < vэ < vп , а гиперболическая скорость vr > vп . Гиперболическая орбита определяется теми же шестью элементами, что и эллиптическая (см. § 41), только вместо большой полуоси а = ¥ дается перигельное расстояние q. Параболическая орбита определяется пятью элементами: i, <, w, t0 и q, так как для параболы а = ¥ и е = 1.
§ 49. Первый (обобщенный) закон Кеплера
Законы Кеплера были получены им эмпирически в результате исследования видимых движений планет. Поэтому первый закон Кеплера в формулировке, данной в § 40, справедлив лишь в отношении больших планет и тех тел Солнечной системы (некоторых комет, астероидов), которые движутся вокруг Солнца по замкнутым орбитам. Если же иметь в виду движения небесных тел вообще, то на основании предыдущего параграфа этот закон надо сформулировать в следующем виде: под действием силы притяжения одно небесное тело движется в поле тяготения другого небесного тела по одному из конических сечений - кругу, эллипсу, параболе или гиперболе. В этой формулировке первый закон Кеплера будет справедлив уже для всех комет, орбиты которых либо эллипсы, либо параболы, либо гиперболы; он будет справедлив и для спутников больших планет, орбиты которых эллипсы, но в их фокусах находятся большие планеты, и для физических двойных звезд (см. § 154), обращающихся по эллиптическим орбитам вокруг общего центра масс, и т.д. При этом форма и размеры орбит тел зависят только от величины начальной скорости.
§ 50. Второй закон Кеплера
Возьмем прямоугольную систему координат, начало которой находится в центре притяжения, а плоскость ху совпадает с плоскостью орбиты тела.
Проектируя ускорение и силу на координатные оси х и у (рис. 31), напишем основное уравнение динамики (2.14) в следующем виде: Умножая эти уравнения соответственно на у и х и вычитая первое из второго, получим или Поскольку сила центральная, то имеет место соотношение Поэтому или
(2.21)
В полярных координатах х = r cos q, у = r sin q, где r - расстояние точки от начала координат (радиус-вектор точки), а q полярный угол (истинная аномалия). Если перейти от прямоугольной системы координат к полярным координатам, то выражение (2.21) будет иметь вид
(2.22)
т.e. площадь, описанная радиусом-вектором за единицу времени, есть величина постоянная. Это есть математическое выражение второго закона Кеплера (см. § 40). § 51. Третий (уточненный) закон Кеплера
При круговом движении ускорение w = w2r, где угловая скорость , а Т - период обращения по окружности. Следовательно, ускорение Если рассматривать относительное движение по кругу небесного тела с массой т вокруг центрального тела с массой M, то согласно уравнению (2.17) относительное ускорение Так как w и wот - одно и то же ускорение, то, приравняв их правые части, получим
(2.23)
Если рассматривать движение небесного тела по эллипсу, то получится соотношение, аналогичное (2.23), только в нем радиус круга r заменится на большую полуось а, а T будет означать период обращения тела по эллипсу. Напишем это соотношение для двух тел, массы которых т1 и т2 , большие полуоси их эллиптических орбит а1 и a2 , а периоды их обращений вокруг их центральных тел с массами М1 и М2 обозначим через T1 и T2 . Тогда откуда
(2.24)
Это точное выражение третьего закона Кеплера. Если рассматривать движение двух планет вокруг Солнца, т.e. вокруг одного и того же тела (М1 = М2 ), и пренебречь массами планет (т1 " m2 = 0) в сравнении с массой Солнца, то получим формулу (2.7), выведенную Кеплером из наблюдений: Так как массы планет в сравнении с массой Солнца незначительны, то формула Кеплера достаточно хорошо согласуется с наблюдениями. Формулы (2.23) и (2.24) играют большую роль в астрономии: они дают возможность определять массы небесных тел (см. § 58).
§ 52. Понятие о возмущенном движении
Если бы какое-нибудь тело Солнечной системы притягивалось только Солнцем, то оно двигалось бы вокруг Солнца точно по законам Кеплера. Такое движение, соответствующее решению задачи двух тел, называют невозмущенным. В действительности же все тела Солнечной системы притягиваются не только Солнцем, но и друг другом. Поэтому ни одно тело в Солнечной системе не может точно двигаться по эллипсу, параболе, гиперболе и тем более по кругу. Отклонения в движениях тел от законов Кеплера называются возмущениями, а реальное движение тел - возмущенным движением. Возмущения тел Солнечной системы имеют очень сложный характер, и их учет чрезвычайно труден, хотя они сравнительно и невелики, так как массы этих тел по сравнению с массой Солнца очень малы (общая их масса меньше массы Солнца). Возмущения можно рассматривать как различие между положениями светила при возмущенном и невозмущенном движениях, а возмущенное движение тела представлять как движение по законам Кеплера с переменными элементами его орбиты. Изменения элементов орбиты тела вследствие притяжения его другими телами, помимо центрального, называются возмущениями, или неравенствами элементов. Возмущения элементов делятся на вековые и периодические. Вековые возмущения тел Солнечной системы зависят от взаимного расположения их орбит, которое в течение очень больших промежутков времени изменяется очень мало. Поэтому вековые возмущения элементов происходят в одном и том же направлении и величина их приблизительно пропорциональна времени. Вековым возмущениям подвержены два элемента орбиты - долгота восходящего узла < и долгота перигелия p. Периодические возмущения зависят от относительного положения тел на их орбитах, которое при движении по замкнутым орбитам повторяется через определенные промежутки времени. Поэтому периодические возмущения элементов орбит происходят попеременно то в одном, то в противоположном направлении, и им подвержены в той или иной степени все элементы орбит. Так как у больших планет невозмущенные орбиты - замкнутые кривые (эллипсы), а вековым возмущениям подвержены только долготы узлов и долготы перигелиев, то планетная система должна в ближайшем будущем остаться в существенных своих чертах такой же, какой она является в настоящее время. Однако вопрос об устойчивости Солнечной системы в течение чрезвычайно длительных промежутков времени, например, в течение нескольких миллиардов лет, остается нерешенным.