§ 56. Задача трех и более тел
Определение движения трех тел, взаимно притягивающих друг друга с силой, обратно пропорциональной квадрату расстояния между ними, называется задачей трех тел. В 1912 г. финский математик Зундман получил теоретическое решение этой задачи при произвольных начальных условиях в виде сходящихся рядов. Но эти ряды настолько сложны и сходятся так медленно, что не позволяют ни вычислять положения тел в пространстве, ни делать какие-либо заключения о характере и свойствах движений тел. Поэтому формулы Зундмана практического значения пока не имеют. Лагранж в 1772 г. доказал, что существует определенное количество частных случаев в задаче о трех телах, в которых может быть найдено точное решение. Если заданы массы тел и их положение на плоскости, как, например, на рис. 206 из § 156, то рассматриваемые частные случаи движения в этой плоскости получаются при расположении третьего тела в одной из пяти точек, называемых точками либрации или точками Лагранжа. Первые три точки либрации располагаются в определенных точках прямой, соединяющей обе заданные массы, причем одна между ними, а две другие - вне их. Четвертая и пятая Точки являются вершинами двух равносторонних треугольников, в которых остальные вершины заняты заданными массами. Лагранж показал, что если третье тело находится в одной из пяти точек либрации, то конфигурация, которую образуют все три тела, всегда остается подобной самой себе, а их движение происходит по коническим сечениям одинакового вида. Таким образом: 1) если три тела расположены на одной прямой, то они обращаются, оставаясь на ней, вокруг общего центра масс; 2) если три тела расположены в вершинах равностороннего треугольника, то они обращаются вокруг общего центра масс так, что треугольник остается все время равносторонним. Лагранж считал, что найденные им решения имеют чисто теоретическое значение. Однако в XIX в. были открыты две группы астероидов (малых планет), движения которых приблизительно соответствуют второму решению Лагранжа (см. § 140). Первое решение позволяет изучить движение газовых струй в оболочках тесных двойных систем, о чем речь пойдет в § 157. 3адача определения движений четырех и более тел (задача n тел), притягивающих друг друга по закону Ньютона, еще более сложна, чем задача трех тел, и до сих пор не решена. Поэтому при исследовании движений п тел, например, тел Солнечной системы, применяется метод вычисления возмущений, позволяющий найти приближенное решение задачи, которое на определенном интервале времени достаточно близко к точному решению Вычисление возмущений для тел Солнечной системы - одна из самых важных, но очень трудных задач небесной механики ныне значительно облегченной благодаря применению электронно-счетных машин.
§ 57. Открытие Нептуна
Одним из самых блестящих достижений небесной механики является открытие планеты Нептун. В 1781 г. английский астроном Уильям Гершель открыл новую большую планету, получившую название Уран, которую раньше принимали за звезду и неоднократно, почти в течение целого столетия, определяли ее координаты. Когда по этим координатам стали вычислять орбиту Урана, то оказалось, что в его движении, даже после учета всех возмущений от известных тогда больших планет, имеются отклонения от кеплеровского движения. Для объяснения этих остаточных отклонений было сделано предположение, что они вызываются действием еще одной неизвестной планеты, и перед астрономией возникла задача: по возмущениям в движении Урана определить положение (координаты) возмущающей планеты. Эта трудная математическая задача была решена почти одновременно, независимо друг от друга, французским ученым Леверрье и английским - Адамсом. 23 сентября 1846 г. немецкий астроном Галле нашел предполагаемую планету на расстоянии всего лишь около 1° от той точки неба, которую указал ему Леверрье по своим вычислениям. Новая планета получила название Нептун. Открытие Нептуна, сделанное, по выражению Энгельса, на “кончике пера”, является убедительнейшим Доказательством справедливости закона всемирного тяготения Ньютона.
§ 58. Определение масс небесных тел
Закон всемирного тяготения Ньютона позволяет измерить одну из важнейших физических характеристик небесного тела - его массу. Массу небесного тела можно определить: а) из измерений силы тяжести на поверхности данного тела (гравиметрический способ); б) по третьему (уточненному) закону Кеплера; в) из анализа наблюдаемых возмущений, производимых небесным. телом в движениях других небесных тел. Первый способ применим пока только к Земле и заключается в следующем. На основании закона тяготения ускорение силы тяжести на поверхности Земли где т - масса Земли, a R - ее радиус. Отсюда масса Земли
(2.25)
Ускорение силы тяжести g (точнее, ускорение составляющей силы тяжести, обусловленной только силой притяжения), так же как и радиус Земли R , определяется из непосредственных измерений на поверхности Земли (см. § 46 и 62). Постоянная тяготения f достаточно точно определена из опытов Кэвендиша и Йолли, хорошо известных в физике. С принятыми в настоящее время значениями величин g, R и f по формуле (2.25) получается масса Земли Зная массу Земли и ее объем, легко найти среднюю плотность Земли. Она равна 5,52 г/см3 Третий, уточненный закон Кеплера позволяет определить соотношение между массой Солнца и массой планеты, если у последней имеется хотя бы один спутник и известны его расстояние от планеты и период обращения вокруг нее. Действительно, движение спутника вокруг планеты подчиняется тем же законам, что и движение планеты вокруг Солнца и, следовательно, уравнение (2.24) может быть записано в этом случае так: где - М, т и mc - массы Солнца, планеты и ее спутника, Т и tc - периоды обращений планеты вокруг Солнца и спутника вокруг планеты, a и ас - расстояния планеты от Солнца и спутника от планеты соответственно. Разделив числитель и знаменатель левой части дроби этого уравнения па т и решив его относительно масс, получим
(2.26)
Отношение для всех планет очень велико; отношение же наоборот, мало (кроме Земли и ее спутника Луны) и им можно пренебречь. Тогда в уравнении (2.26) останется только одно неизвестное отношение , которое легко из него определяется. Например, для Юпитера определенное таким способом обратное отношение равно 1 : 1050. Так как масса Луны, единственного спутника Земли, сравнительно с земной массой достаточно большая, то отношением в уравнении (2.26) пренебрегать нельзя. Поэтому для сравнения массы Солнца с массой Земли необходимо предварительно определить массу Луны. Точное определение массы Луны является довольно трудной задачей, и решается она путем анализа тех возмущений в движении Земли, которые вызываются Луной. Под влиянием лунного притяжения Земля должна описывать в течение месяца эллипс вокруг общего центра масс системы Земля - Луна. По точным определениям видимых положений Солнца в его долготе были обнаружены изменения с месячным периодом, называемые “лунным неравенством”. Наличие “лунного неравенства” в видимом движении Солнца указывает на то, что центр Земли действительно описывает небольшой эллипс в течение месяца вокруг общего центра масс “Земля - Луна”, расположенного внутри Земли, на расстоянии 4650 км от центра Земли. Это позволило определить отношение массы Луны к массе Земли, которое оказалось равным . Положение центра масс системы “Земля - Луна” было найдено также из наблюдений малой планеты Эрос в 1930-1931 гг. Эти наблюдения дали для отношения масс Луны и Земли величину . Наконец, по возмущениям в движениях искусственных спутников Земли отношение масс Луны и Земли получилось равным . Последнее значение наиболее точное, и в 1964 г. Международный астрономический союз принял его как окончательное в числе других астрономических постоянных. Это значение подтверждено в 1966 г. вычислением массы Луны по параметрам обращения ее искусственных спутников. С известным отношением масс Луны и Земли из уравнения (2.26) получается, что масса Солнца M¤ в 333 000 раз больше массы Земли, т.е. M¤ " 2 × 1033 г. Зная массу Солнца и отношение этой массы к массе любой другой планеты, имеющей спутника, легко определить массу этой планеты. Массы планет, не имеющих спутников (Меркурий, Венера, Плутон), определяются из анализа тех возмущений, которые они производят в движении других планет или комет. Так, например, массы Венеры и Меркурия определены по, тем возмущениям, которые они вызывают в движении Земли, Марса, некоторых малых планет (астероидов) и кометы Энке - Баклунда, а также по возмущениям, производимым ими друг на друга.