«Н»: А можно это изобразить на рисунке?
«С»: Ну почему нет? Вот, прошу вас (рис. 8.1)…
«А»: На всякий случай, может приведете расчетную формулу?
«С»: Конечно же, я предпочел бы иное решение, чем применение спирального резонатора! Но… раз вытребуете расчетную формулу, то вот она:
Здесь: N — число витков спирали;
S — показано на рис. 8.1;
σ — толщина стенки каркаса, на который намотана спираль, см. рис. 8.1;
ε — диэлектрическая проницаемость каркаса.
При этом S определяется, исходя из требуемой добротности Q0 по формуле:
Добротность, согласно исследованиям авторов этой конструкции, можно довести до 800!
«А»: Я полагаю, что возни с подобным фильтром будет немало, но проблема при этом до конца не решится! Верно?
«С»: Да, я тоже считаю так, поскольку полосу селекции сделать лучше, чем 50 кГц вряд ли удастся!
«Н»: При fпр = 40 МГц?
«С»: Ну конечно! Так что на спиральный резонатор можно согласиться только в совершенно пиковом случае!..
Иная картина получается, если удастся достать ПОЛОСОВОЙ КВАРЦЕВЫЙ ФИЛЬТР! Этот фильтр представляет из себя сложную многорезонаторную систему, включающую в свой состав согласующие ВЧ-трансформаторы, подстроечные элементы и т. д. При этом сами кварцы включены по, так называемой, дифференциально-мостовой схеме, помещены в общий экран, индивидуально настроены и герметизированы.
Вот подобный фильтр, хотя его стоимость и высока — это действительно решение проблемы!
«Н»: А эти фильтры выпускаются промышленностью?
«С»: Обязательно, Незнайкин! Например, одним из заводов города Волгограда (Царицына) в России. Мне приходилось встречаться с несколькими разновидностями таких фильтров, настроенных, соответственно, на частоты 40 МГц; 45 МГц; 55,5 МГц.
«А»: А как именуются эти изделия?
«С»: Они называются: ФП2П (2–1); ФП2П (4–1). Кроме того, имеются великолепные японские, американские и западноевропейские изделия! Но мы подробнее поговорим о названиях позднее.
«А»: Отлично! Идем дальше по схеме… Усилитель А2 — пропускаем, ведь он такой же, как и А1. Верно?
«С»: …Почти. Следующий квадратик — второй смеситель U2.
«А»: Но я вижу, что второй гетеродин — неперестраиваемый! Ну это, допустим, еще понятно. А вот почему он кварцованный? Что вообще реально может дать применение в генераторе кварца?
«С»: Стабильность частоты LC — генераторов во многих случаях недостаточна! Она зависит от множества факторов. От температурных коэффициентов индуктивности и емкости. Обычно в составе гетеродинов используют именно LC — генераторы. Подобные гетеродины имеют относительную частотную нестабильность Δf/f0 равную 10-3—10-4.
Это означает, что при f0 = 50 МГц, при нестабильности 10-4 Δf = 5 кГц! То есть дрейф частоты гетеродина равен ПОЛУШИРИНЕ полосы пропускания! Для рассматриваемого приемника это величина недопустимо большая!
Максимальная нестабильность, с которой еще можно как-то мириться, для второго гетеродина составляет величину (2–3)∙10-6.
Это нормально для обычного кварцованного генератора! Хотя следует сказать, что в случае двойного термостатирования кварцевых генераторов нестабильность может быть ограничена уровнем ДЕСЯТЬ В МИНУС ДЕВЯТОЙ СТЕПЕНИ!
«А»: Но ведь это решает наши проблемы!
«С»: Ну, если и не все, то многие!.. Разработаны (и довольно давно) очень неплохие схемы с кварцевыми резонаторами. Например, кварцевые генераторы на основе схем Хартли и Колпитца!
«А»: То есть этот вопрос решается! Тогда, уважаемый Спец, перейдем к следующим квадратикам структурной схемы!
«С»: Далее у нас идет второй смеситель U2. Он каких-то особых, принципиальных отличий от U1 не имеет. Далее идет еще один фильтр — Z3!