Частица, в отличие от размазанной по пространству волны, двигается по четко определенному пути. Но квантовая механика не допускает существования траектории частицы, которую можно увидеть в камере Вильсона. Проблема казалось неразрешимой. Гейзенберг, однако, был убежден, что установить связь между тем, что наблюдается в конденсационной камере, и квантовой теорией можно, “как бы трудно это ни было”29.
Однажды поздно вечером, работая в своей мансарде под крышей института, Гейзенберг в который раз размышлял о решении загадки трека электрона в камере Вильсона, где в согласии с квантовой теорией его быть не должно. Неожиданно в его голове эхом отозвалось замечание Эйнштейна о том, что “именно теория решает, что мы можем наблюдать”30. Гейзенберг был убежден, что он что-то нащупал. Ему надо было успокоиться, и хотя было уже далеко за полночь, он вышел прогуляться в соседний парк.
Гейзенберг, едва ли замечая холод, размышлял над тем, чем на самом деле является след, остающийся позади электрона в камере Вильсона. “Мы всегда так пространно рассуждали о том, что путь электрона в конденсационной камере наблюдать можно”, — написал он позднее31. “Но, возможно, мы наблюдаем нечто менее определенное. Может, мы просто видим набор отдельных, неточно определенных мест, где побывал электрон. На самом деле все, что можно видеть в туманной камере, — это отдельные капельки воды, которые, несомненно, гораздо больше электрона”32. Гейзенберг верил, что не существует одного непрерывного, не разделенного на части пути. Бор и он неверно ставили вопрос. Правильный вопрос звучал так: “Может ли квантовая механика объяснить, почему электрон оказался приблизительно в этом месте и почему он двигается приблизительно с этой скоростью?” Вернувшись к столу, Гейзенберг начал колдовать над уравнениями. По-видимому, квантовая механика накладывает ограничения на то, что можно узнать и наблюдать. Но как теория может решать, что можно, а что нельзя? Ответом стал принцип неопределенности.
Гейзенберг понял, что квантовая механика запрещает возможность определить в любой заданный момент времени одновременно и точно положение частицы и ее импульс. Можно точно измерить, где электрон находится или как быстро он движется, но точно измерить одновременно эти две величины нельзя. Это та цена, которую требует природа за знание одной из них. В квантовой игре во взаимные уступки чем точнее измерена одна из величин, тем менее точно мы знаем другую. Гейзенберг понимал: если он прав, это означает, что никакое экспериментальное исследование квантового мира не позволит перейти границу, установленную принципом неопределенности. Конечно, доказать это утверждение было невозможно. Но Гейзенберг был уверен: если в эксперименте все процессы “с необходимостью подчиняются законам квантовой механики”33, именно так и происходит.
Во все следующие дни он проверял это предположение, названное им принципом неопределенности. Ум Гейзенберга стал лабораторией, где один за другим ставились мысленные эксперименты, в которых, казалось бы, можно измерить одновременно координату и импульс с точностью, не разрешенной принципом неопределенности. Расчеты показывали, что этот принцип не нарушается. А один из мысленных экспериментов убедил Гейзенберга в том, что ему удалось показать, почему “именно теория решает, что мы можем наблюдать”.
Как-то Гейзенберг обсуждал с приятелем трудности, возникающие в связи с понятием “орбита электрона”. Собеседник утверждал, что в принципе можно построить микроскоп, позволяющий проследить путь электрона внутри атома. Но теперь стало ясно, что такой эксперимент исключается, поскольку “ни один, даже лучший микроскоп не может выйти за рамки принципа неопределенности”34. Гейзенбергу оставалось только доказать это теоретически и показать, что определить точно положение движущегося электрона нельзя.