Выбрать главу

Для начала возьмём пулемёт, и проведём мысленно эксперимент, показанный на рис. 1.

Он не очень хорош, наш пулемёт. Он выпускает пули, направление полёта которых заранее неизвестно. То ли направо они полетят, то ли налево…. Перед пулемётом стоит броневая плита, а в ней проделаны две щели, через которые пули свободно проходят. Далее стоит "детектор" — любая ловушка, в которой застревают все попавшие в неё пули. Когда нужно, можно пересчитать число пуль, застрявших в ловушке на единицу её длины, и разделить её на полное число выпущенных пуль. Или на время стрельбы, если скорость стрельбы считать постоянной. Эту величину — число застрявших пуль на единицу длины ловушки в окрестности некоторой точки Х, отнесённой к полному числу пуль, мы будем называть вероятностью попадания пули в точку Х. Заметим, что мы можем говорить только о вероятности — ведь мы не можем сказать определённо, куда попадёт очередная пуля. Ведь пуля, даже попав в дыру, может срикошетить от её края и уйти вообще неизвестно куда.

Давайте мысленно проведём три опыта: первый, когда открыта первая щель, а вторая закрыта, второй — когда открыта вторая щель, а первая закрыта. И, наконец, третий опыт, когда обе щели открыты.

Результат нашего "эксперимента" показан на этом же рисунке, на графике. Вероятность в нём отложена вправо, а координата — это и есть положение точки X. Синяя кривая показывает распределение вероятности P1 попавших в детектор пуль при открытой первой щели, зелёная кривая — вероятность попадания в детектор пуль при открытой второй щели, и красная кривая — вероятность попадания в детектор пуль при обеих открытых щелях. Сравнив величины P1, P2 и P12, мы можем сделать вывод, что вероятности просто складываются,

P1 + P2 = P12.

Итак, для пуль действие двух щелей складывается из действия каждой щели в отдельности.

Представим себе такой же опыт с электронами, схема которого показана на рис. 2.

Возьмём электронную пушку, типа тех, которые стоят в каждом телевизоре, и поместим перед ней непрозрачный для электронов экран с двумя щелями. Прошедшие через щели электроны можно регистрировать различными методами: с помощью сцинтиллирующего экрана, попадание электрона на который вызывает вспышку света, фотоплёнки или с помощью счётчиков различных типов, например, счётчика Гейгера. регистрирует прохождение электрона сквозь неё (рис. 3).

Результаты измерений для электронов в случае, когда одна из щелей закрыта, выглядят вполне разумно, и весьма походят на наш опыт с пулемётной стрельбой (синяя и зелёная кривая на рисунке). А вот для случая, когда обе щели открыты, мы получаем совершенно неожиданную кривую P12, показанную красным цветом. Она явным образом не совпадает с суммой P1 и P2! Получившуюся картину называют интерференционной картиной от двух щелей.

Давайте попробуем разобраться, в чём тут дело. Если мы исходим из гипотезы, что электрон проходит либо через щель 1, либо через щель 2, то в случае двух открытых щелей мы должны получить сумму эффектов от одной и другой щели, как это имело место в опыте с пулемётной стрельбой. Вероятности независимых событий складываются, и в этом случае мы бы получили P1 + P2 = P12.

Может, мы не учли какой-нибудь существенный эффект, и суперпозиция состояний здесь совсем ни при чём? Может быть, у нас очень мощный поток электронов, и разные электроны, проходя через разные щели, как-то искажают движение друг друга? Для проверки этой гипотезы надо модернизировать электронную пушку так, что электроны вылетали из неё достаточно редко. Скажем, не чаще, чем раз в полчаса. За это время каждый электрон уж точно пролетит всё расстояние от пушки до детектора и будет зарегистрирован! Так что никакого взаимного влияния летящих электронов друг на друга уж точно не будет!

Сказано — сделано. Мы модернизировали электронную пушку и полгода провели возле установки, проводя эксперимент и набирая необходимую статистику. Каков же результат? Он ничуть не изменился.

Но, может быть, электроны каким-то образом блуждают от отверстия к отверстию и только потом достигают детектора? Это объяснение также не проходит: на кривой P12 при двух открытых щелях есть точки, в которые попадает значительно меньше электронов, чем при любой из открытых щелей. И наоборот, есть точки, количество электронов в которых более чем вдвое превышает сумму электронов, прошедших из каждой щели по отдельности.